Nuprl Lemma : fset-constrained-image-union
∀[T,A:Type]. ∀[eqt:EqDecider(T)]. ∀[eqa:EqDecider(A)]. ∀[f:T ⟶ A]. ∀[P:A ⟶ 𝔹]. ∀[x,y:fset(T)].
  (f"(x ⋃ y) s.t. P = f"(x) s.t. P ⋃ f"(y) s.t. P ∈ fset(A))
Proof
Definitions occuring in Statement : 
fset-constrained-image: f"(s) s.t. P, 
fset-union: x ⋃ y, 
fset: fset(T), 
deq: EqDecider(T), 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
implies: P ⇒ Q, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
or: P ∨ Q, 
decidable: Dec(P), 
guard: {T}, 
not: ¬A, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
rev_uimplies: rev_uimplies(P;Q), 
squash: ↓T, 
exists: ∃x:A. B[x], 
cand: A c∧ B, 
false: False
Lemmas referenced : 
fset-extensionality, 
fset-constrained-image_wf, 
fset-union_wf, 
fset-member_witness, 
fset-member_wf, 
or_wf, 
member-fset-union, 
uiff_wf, 
fset_wf, 
bool_wf, 
deq_wf, 
member-fset-constrained-image-iff, 
decidable__fset-member, 
squash_wf, 
exists_wf, 
equal_wf, 
assert_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
cumulativity, 
functionExtensionality, 
applyEquality, 
hypothesis, 
productElimination, 
independent_isectElimination, 
independent_pairFormation, 
because_Cache, 
independent_functionElimination, 
rename, 
addLevel, 
dependent_functionElimination, 
sqequalRule, 
independent_pairEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
functionEquality, 
universeEquality, 
unionElimination, 
inlFormation, 
inrFormation, 
lambdaFormation, 
lambdaEquality, 
productEquality, 
promote_hyp, 
imageElimination, 
dependent_pairFormation, 
imageMemberEquality, 
baseClosed, 
voidElimination
Latex:
\mforall{}[T,A:Type].  \mforall{}[eqt:EqDecider(T)].  \mforall{}[eqa:EqDecider(A)].  \mforall{}[f:T  {}\mrightarrow{}  A].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[x,y:fset(T)].
    (f"(x  \mcup{}  y)  s.t.  P  =  f"(x)  s.t.  P  \mcup{}  f"(y)  s.t.  P)
Date html generated:
2017_04_17-AM-09_21_20
Last ObjectModification:
2017_02_27-PM-05_24_07
Theory : finite!sets
Home
Index