Nuprl Lemma : member-fset-union
∀[T:Type]. ∀eq:EqDecider(T). ∀x,y:fset(T). ∀a:T.  (a ∈ x ⋃ y ⇐⇒ a ∈ x ∨ a ∈ y)
Proof
Definitions occuring in Statement : 
fset-union: x ⋃ y, 
fset-member: a ∈ s, 
fset: fset(T), 
deq: EqDecider(T), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
or: P ∨ Q, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
member: t ∈ T, 
decidable: Dec(P), 
or: P ∨ Q, 
fset: fset(T), 
prop: ℙ, 
quotient: x,y:A//B[x; y], 
not: ¬A, 
fset-union: x ⋃ y, 
fset-member: a ∈ s, 
false: False, 
uimplies: b supposing a, 
sq_type: SQType(T), 
guard: {T}, 
true: True, 
rev_implies: P ⇐ Q
Lemmas referenced : 
decidable__or, 
fset-member_wf, 
decidable__fset-member, 
list_wf, 
set-equal_wf, 
set-equal-reflex, 
assert-deq-member, 
l-union_wf, 
equal_wf, 
subtype_base_sq, 
int_subtype_base, 
fset-union_wf, 
fset-member_witness, 
fset_wf, 
deq_wf, 
istype-universe, 
member-union, 
istype-assert, 
deq-member_wf, 
l_member_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :lambdaFormation_alt, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
dependent_functionElimination, 
because_Cache, 
unionElimination, 
Error :universeIsType, 
promote_hyp, 
Error :inhabitedIsType, 
pointwiseFunctionality, 
sqequalRule, 
pertypeElimination, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
voidElimination, 
Error :productIsType, 
Error :equalityIsType4, 
intEquality, 
natural_numberEquality, 
instantiate, 
cumulativity, 
independent_isectElimination, 
Error :unionIsType, 
universeEquality, 
Error :inlFormation_alt, 
Error :inrFormation_alt
Latex:
\mforall{}[T:Type].  \mforall{}eq:EqDecider(T).  \mforall{}x,y:fset(T).  \mforall{}a:T.    (a  \mmember{}  x  \mcup{}  y  \mLeftarrow{}{}\mRightarrow{}  a  \mmember{}  x  \mvee{}  a  \mmember{}  y)
Date html generated:
2019_06_20-PM-01_58_42
Last ObjectModification:
2018_11_23-PM-02_42_33
Theory : finite!sets
Home
Index