Nuprl Lemma : compose_increasing
∀[k,m:ℕ]. ∀[f:ℕk ⟶ ℕm]. ∀[g:ℕm ⟶ ℤ].  (increasing(g o f;k)) supposing (increasing(g;m) and increasing(f;k))
Proof
Definitions occuring in Statement : 
compose: f o g
, 
increasing: increasing(f;k)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
increasing: increasing(f;k)
, 
all: ∀x:A. B[x]
, 
compose: f o g
, 
guard: {T}
, 
nat: ℕ
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
less_than': less_than'(a;b)
, 
true: True
, 
less_than: a < b
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
increasing_implies, 
int_seg_wf, 
subtract_wf, 
member-less_than, 
compose_wf, 
decidable__lt, 
false_wf, 
not-lt-2, 
less-iff-le, 
condition-implies-le, 
add-associates, 
nat_wf, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
le-add-cancel2, 
lelt_wf, 
add-member-int_seg2, 
decidable__le, 
not-le-2, 
zero-add, 
add-zero, 
increasing_wf, 
subtype_rel_dep_function
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
natural_numberEquality, 
setElimination, 
rename, 
lambdaEquality, 
dependent_functionElimination, 
applyEquality, 
because_Cache, 
intEquality, 
dependent_set_memberEquality, 
productElimination, 
independent_pairFormation, 
unionElimination, 
voidElimination, 
independent_functionElimination, 
addEquality, 
minusEquality, 
isect_memberEquality, 
voidEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality
Latex:
\mforall{}[k,m:\mBbbN{}].  \mforall{}[f:\mBbbN{}k  {}\mrightarrow{}  \mBbbN{}m].  \mforall{}[g:\mBbbN{}m  {}\mrightarrow{}  \mBbbZ{}].
    (increasing(g  o  f;k))  supposing  (increasing(g;m)  and  increasing(f;k))
Date html generated:
2016_05_13-PM-04_05_25
Last ObjectModification:
2015_12_26-AM-11_05_22
Theory : fun_1
Home
Index