Nuprl Lemma : increasing_inj

[k,m:ℕ]. ∀[f:ℕk ⟶ ℕm].  Inj(ℕk;ℕm;f) supposing increasing(f;k)


Proof




Definitions occuring in Statement :  inject: Inj(A;B;f) increasing: increasing(f;k) int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  inject: Inj(A;B;f) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] implies:  Q prop: nat: subtype_rel: A ⊆B int_seg: {i..j-} guard: {T} decidable: Dec(P) or: P ∨ Q squash: T false: False lelt: i ≤ j < k and: P ∧ Q le: A ≤ B iff: ⇐⇒ Q not: ¬A rev_implies:  Q uiff: uiff(P;Q) top: Top less_than': less_than'(a;b) true: True
Lemmas referenced :  equal_wf int_seg_wf increasing_wf nat_wf increasing_implies decidable__lt less_than_transitivity1 lelt_wf le_weakening less_than_irreflexivity decidable__int_equal false_wf not-equal-2 not-lt-2 add_functionality_wrt_le add-swap add-commutes le-add-cancel add-associates
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lambdaFormation hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality applyEquality functionExtensionality because_Cache lambdaEquality dependent_functionElimination axiomEquality isect_memberEquality equalityTransitivity equalitySymmetry functionEquality independent_isectElimination unionElimination applyLambdaEquality imageMemberEquality baseClosed productElimination dependent_set_memberEquality independent_pairFormation independent_functionElimination voidElimination addEquality voidEquality intEquality

Latex:
\mforall{}[k,m:\mBbbN{}].  \mforall{}[f:\mBbbN{}k  {}\mrightarrow{}  \mBbbN{}m].    Inj(\mBbbN{}k;\mBbbN{}m;f)  supposing  increasing(f;k)



Date html generated: 2017_04_14-AM-07_33_19
Last ObjectModification: 2017_02_27-PM-03_07_36

Theory : fun_1


Home Index