Nuprl Lemma : surject-nat-bool

g:ℕ ⟶ 𝔹Surj(ℕ;𝔹;g)


Proof




Definitions occuring in Statement :  surject: Surj(A;B;f) nat: bool: 𝔹 exists: x:A. B[x] function: x:A ⟶ B[x]
Definitions unfolded in proof :  nequal: a ≠ b ∈  true: True not: ¬A less_than': less_than'(a;b) le: A ≤ B false: False assert: b ifthenelse: if then else fi  bnot: ¬bb guard: {T} sq_type: SQType(T) or: P ∨ Q prop: bfalse: ff uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 implies:  Q all: x:A. B[x] surject: Surj(A;B;f) nat: uall: [x:A]. B[x] member: t ∈ T exists: x:A. B[x]
Lemmas referenced :  equal-wf-T-base neg_assert_of_eq_int int_subtype_base assert_of_eq_int le_wf false_wf surject_wf assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eqff_to_assert eqtt_to_assert nat_wf btrue_wf bfalse_wf bool_wf eq_int_wf ifthenelse_wf
Rules used in proof :  baseClosed intEquality independent_pairFormation dependent_set_memberEquality applyEquality functionExtensionality voidElimination because_Cache independent_functionElimination equalitySymmetry equalityTransitivity cumulativity instantiate dependent_functionElimination promote_hyp independent_isectElimination productElimination equalityElimination unionElimination sqequalRule lambdaFormation natural_numberEquality hypothesis hypothesisEquality rename setElimination thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaEquality dependent_pairFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mexists{}g:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  Surj(\mBbbN{};\mBbbB{};g)



Date html generated: 2017_09_29-PM-05_48_02
Last ObjectModification: 2017_09_04-PM-00_14_35

Theory : fun_1


Home Index