Nuprl Lemma : increasing_implies_le

[k:ℕ]. ∀[f:ℕk ⟶ ℤ].  {∀[x,y:ℕk].  (f x) ≤ (f y) supposing x ≤ y} supposing increasing(f;k)


Proof




Definitions occuring in Statement :  increasing: increasing(f;k) int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] guard: {T} le: A ≤ B apply: a function: x:A ⟶ B[x] natural_number: $n int:
Definitions unfolded in proof :  guard: {T} uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a le: A ≤ B and: P ∧ Q not: ¬A implies:  Q false: False prop: int_seg: {i..j-} nat: all: x:A. B[x] decidable: Dec(P) or: P ∨ Q sq_type: SQType(T) iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtype_rel: A ⊆B top: Top less_than': less_than'(a;b) true: True
Lemmas referenced :  less_than'_wf le_wf int_seg_wf increasing_wf nat_wf decidable__int_equal subtype_base_sq int_subtype_base le_weakening increasing_implies decidable__lt false_wf not-lt-2 not-equal-2 add_functionality_wrt_le add-swap add-commutes le-add-cancel add-associates le_weakening2
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin independent_pairEquality lambdaEquality dependent_functionElimination hypothesisEquality because_Cache extract_by_obid isectElimination applyEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry setElimination rename isect_memberEquality natural_numberEquality functionEquality intEquality voidElimination unionElimination promote_hyp instantiate cumulativity independent_isectElimination independent_functionElimination independent_pairFormation lambdaFormation addEquality voidEquality

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[f:\mBbbN{}k  {}\mrightarrow{}  \mBbbZ{}].    \{\mforall{}[x,y:\mBbbN{}k].    (f  x)  \mleq{}  (f  y)  supposing  x  \mleq{}  y\}  supposing  increasing(f;k)



Date html generated: 2018_05_21-PM-00_04_00
Last ObjectModification: 2018_05_19-AM-07_10_38

Theory : int_1


Home Index