Nuprl Lemma : increasing_implies_le
∀[k:ℕ]. ∀[f:ℕk ⟶ ℤ].  {∀[x,y:ℕk].  (f x) ≤ (f y) supposing x ≤ y} supposing increasing(f;k)
Proof
Definitions occuring in Statement : 
increasing: increasing(f;k)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
le: A ≤ B
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
and: P ∧ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
less_than': less_than'(a;b)
, 
true: True
Lemmas referenced : 
less_than'_wf, 
le_wf, 
int_seg_wf, 
increasing_wf, 
nat_wf, 
decidable__int_equal, 
subtype_base_sq, 
int_subtype_base, 
le_weakening, 
increasing_implies, 
decidable__lt, 
false_wf, 
not-lt-2, 
not-equal-2, 
add_functionality_wrt_le, 
add-swap, 
add-commutes, 
le-add-cancel, 
add-associates, 
le_weakening2
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
hypothesisEquality, 
because_Cache, 
extract_by_obid, 
isectElimination, 
applyEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
setElimination, 
rename, 
isect_memberEquality, 
natural_numberEquality, 
functionEquality, 
intEquality, 
voidElimination, 
unionElimination, 
promote_hyp, 
instantiate, 
cumulativity, 
independent_isectElimination, 
independent_functionElimination, 
independent_pairFormation, 
lambdaFormation, 
addEquality, 
voidEquality
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[f:\mBbbN{}k  {}\mrightarrow{}  \mBbbZ{}].    \{\mforall{}[x,y:\mBbbN{}k].    (f  x)  \mleq{}  (f  y)  supposing  x  \mleq{}  y\}  supposing  increasing(f;k)
Date html generated:
2018_05_21-PM-00_04_00
Last ObjectModification:
2018_05_19-AM-07_10_38
Theory : int_1
Home
Index