Nuprl Lemma : lt_int_eq_true_elim

[i,j:ℤ].  i < supposing i <tt


Proof




Definitions occuring in Statement :  lt_int: i <j btrue: tt bool: 𝔹 less_than: a < b uimplies: supposing a uall: [x:A]. B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B prop: implies:  Q uiff: uiff(P;Q) and: P ∧ Q
Lemmas referenced :  equal-wf-base bool_wf int_subtype_base member-less_than uiff_transitivity assert_wf lt_int_wf less_than_wf eqtt_to_assert assert_of_lt_int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut hypothesis Error :universeIsType,  extract_by_obid sqequalHypSubstitution isectElimination thin sqequalRule baseApply closedConclusion baseClosed hypothesisEquality applyEquality because_Cache isect_memberEquality independent_isectElimination equalityTransitivity equalitySymmetry Error :inhabitedIsType,  intEquality independent_functionElimination productElimination

Latex:
\mforall{}[i,j:\mBbbZ{}].    i  <  j  supposing  i  <z  j  =  tt



Date html generated: 2019_06_20-AM-11_33_13
Last ObjectModification: 2018_09_26-PM-00_12_08

Theory : int_1


Home Index