Nuprl Lemma : lt_int_eq_true_elim
∀[i,j:ℤ].  i < j supposing i <z j = tt
Proof
Definitions occuring in Statement : 
lt_int: i <z j
, 
btrue: tt
, 
bool: 𝔹
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
Lemmas referenced : 
equal-wf-base, 
bool_wf, 
int_subtype_base, 
member-less_than, 
uiff_transitivity, 
assert_wf, 
lt_int_wf, 
less_than_wf, 
eqtt_to_assert, 
assert_of_lt_int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
hypothesis, 
Error :universeIsType, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
isect_memberEquality, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
Error :inhabitedIsType, 
intEquality, 
independent_functionElimination, 
productElimination
Latex:
\mforall{}[i,j:\mBbbZ{}].    i  <  j  supposing  i  <z  j  =  tt
Date html generated:
2019_06_20-AM-11_33_13
Last ObjectModification:
2018_09_26-PM-00_12_08
Theory : int_1
Home
Index