Nuprl Lemma : exp-nondecreasing

[b:{2...}]. ∀[i:ℕ].  ∀j:ℕb^i ≤ b^j supposing i ≤ j


Proof




Definitions occuring in Statement :  exp: i^n int_upper: {i...} nat: uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] uimplies: supposing a nat: decidable: Dec(P) or: P ∨ Q le: A ≤ B and: P ∧ Q not: ¬A implies:  Q false: False int_upper: {i...} prop: guard: {T} ge: i ≥  less_than: a < b squash: T satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T)
Lemmas referenced :  decidable__lt less_than'_wf exp_wf2 le_wf nat_wf int_upper_wf exp-increasing nat_properties int_upper_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int intformeq_wf int_formula_prop_eq_lemma itermConstant_wf int_term_value_constant_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation extract_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename because_Cache hypothesis unionElimination sqequalRule productElimination independent_pairEquality lambdaEquality hypothesisEquality isectElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality voidElimination natural_numberEquality independent_isectElimination dependent_set_memberEquality imageElimination approximateComputation independent_functionElimination dependent_pairFormation int_eqEquality intEquality voidEquality independent_pairFormation instantiate cumulativity

Latex:
\mforall{}[b:\{2...\}].  \mforall{}[i:\mBbbN{}].    \mforall{}j:\mBbbN{}.  b\^{}i  \mleq{}  b\^{}j  supposing  i  \mleq{}  j



Date html generated: 2017_09_29-PM-05_57_39
Last ObjectModification: 2017_07_03-PM-05_35_05

Theory : int_2


Home Index