Nuprl Lemma : exp-nondecreasing
∀[b:{2...}]. ∀[i:ℕ].  ∀j:ℕ. b^i ≤ b^j supposing i ≤ j
Proof
Definitions occuring in Statement : 
exp: i^n
, 
int_upper: {i...}
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
nat: ℕ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
le: A ≤ B
, 
and: P ∧ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
int_upper: {i...}
, 
prop: ℙ
, 
guard: {T}
, 
ge: i ≥ j 
, 
less_than: a < b
, 
squash: ↓T
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
Lemmas referenced : 
decidable__lt, 
less_than'_wf, 
exp_wf2, 
le_wf, 
nat_wf, 
int_upper_wf, 
exp-increasing, 
nat_properties, 
int_upper_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
itermConstant_wf, 
int_term_value_constant_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
unionElimination, 
sqequalRule, 
productElimination, 
independent_pairEquality, 
lambdaEquality, 
hypothesisEquality, 
isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
voidElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_set_memberEquality, 
imageElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
voidEquality, 
independent_pairFormation, 
instantiate, 
cumulativity
Latex:
\mforall{}[b:\{2...\}].  \mforall{}[i:\mBbbN{}].    \mforall{}j:\mBbbN{}.  b\^{}i  \mleq{}  b\^{}j  supposing  i  \mleq{}  j
Date html generated:
2017_09_29-PM-05_57_39
Last ObjectModification:
2017_07_03-PM-05_35_05
Theory : int_2
Home
Index