Nuprl Lemma : int_upper_ind
∀i:ℤ. ∀[E:{i...} ⟶ ℙ{u}]. (E[i] ⇒ (∀k:{i + 1...}. (E[k - 1] ⇒ E[k])) ⇒ {∀k:{i...}. E[k]})
Proof
Definitions occuring in Statement : 
int_upper: {i...}, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
guard: {T}, 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
subtract: n - m, 
add: n + m, 
natural_number: $n, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
guard: {T}, 
member: t ∈ T, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
int_upper: {i...}, 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
wellfounded: WellFnd{i}(A;x,y.R[x; y])
Lemmas referenced : 
all_wf, 
int_upper_wf, 
subtract_wf, 
int_upper_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
itermSubtract_wf, 
itermConstant_wf, 
itermAdd_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_formula_prop_wf, 
le_wf, 
int_upper_subtype_int_upper, 
set_wf, 
int_upper_well_founded, 
less_than_wf, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
addEquality, 
hypothesisEquality, 
natural_numberEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
cumulativity, 
universeEquality, 
sqequalRule, 
functionEquality, 
functionExtensionality, 
because_Cache, 
dependent_set_memberEquality, 
setElimination, 
rename, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
hyp_replacement, 
equalitySymmetry, 
Error :applyLambdaEquality
Latex:
\mforall{}i:\mBbbZ{}.  \mforall{}[E:\{i...\}  {}\mrightarrow{}  \mBbbP{}\{u\}].  (E[i]  {}\mRightarrow{}  (\mforall{}k:\{i  +  1...\}.  (E[k  -  1]  {}\mRightarrow{}  E[k]))  {}\mRightarrow{}  \{\mforall{}k:\{i...\}.  E[k]\})
Date html generated:
2016_10_21-AM-09_59_13
Last ObjectModification:
2016_07_12-AM-05_13_17
Theory : int_2
Home
Index