Nuprl Lemma : rem_base_case

[a:ℕ]. ∀[n:ℕ+].  (a rem n) a ∈ ℤ supposing a < n


Proof




Definitions occuring in Statement :  nat_plus: + nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] remainder: rem m int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: nat: nat_plus: + squash: T subtype_rel: A ⊆B int_nzero: -o so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] implies:  Q nequal: a ≠ b ∈  not: ¬A false: False guard: {T} ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q true: True iff: ⇐⇒ Q rev_implies:  Q decidable: Dec(P) or: P ∨ Q
Lemmas referenced :  less_than_wf nat_plus_wf nat_wf equal_wf squash_wf true_wf rem_to_div subtype_rel_sets nequal_wf nat_plus_properties nat_properties satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf equal-wf-base int_subtype_base iff_weakening_equal decidable__equal_int intformnot_wf itermSubtract_wf itermMultiply_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_term_value_mul_lemma subtract_wf div_base_case
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality sqequalRule isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry applyEquality lambdaEquality imageElimination universeEquality intEquality natural_numberEquality independent_isectElimination setEquality lambdaFormation applyLambdaEquality dependent_pairFormation int_eqEquality dependent_functionElimination voidElimination voidEquality independent_pairFormation computeAll baseClosed independent_functionElimination imageMemberEquality productElimination unionElimination multiplyEquality

Latex:
\mforall{}[a:\mBbbN{}].  \mforall{}[n:\mBbbN{}\msupplus{}].    (a  rem  n)  =  a  supposing  a  <  n



Date html generated: 2017_04_14-AM-09_15_58
Last ObjectModification: 2017_02_27-PM-03_53_27

Theory : int_2


Home Index