Nuprl Lemma : sum-as-primrec
∀[k:ℕ]. ∀[f:ℕk ⟶ ℤ].  (Σ(f[x] | x < k) ~ primrec(k;0;λj,x. (x + f[j])))
Proof
Definitions occuring in Statement : 
sum: Σ(f[x] | x < k)
, 
primrec: primrec(n;b;c)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
sum: Σ(f[x] | x < k)
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
nat: ℕ
, 
so_apply: x[s]
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
squash: ↓T
, 
int_seg: {i..j-}
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
lelt: i ≤ j < k
, 
true: True
, 
so_lambda: λ2x.t[x]
Lemmas referenced : 
sum_aux-as-primrec, 
lelt_wf, 
int_seg_properties, 
false_wf, 
int_seg_subtype, 
zero-add, 
le_wf, 
int_term_value_subtract_lemma, 
int_formula_prop_eq_lemma, 
itermSubtract_wf, 
intformeq_wf, 
subtract_wf, 
decidable__equal_int, 
true_wf, 
squash_wf, 
primrec_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
nat_properties, 
nat_wf, 
int_seg_wf, 
int_subtype_base, 
subtype_base_sq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
independent_isectElimination, 
hypothesis, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
sqequalAxiom, 
functionEquality, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
intEquality, 
sqequalRule, 
isect_memberEquality, 
lambdaEquality, 
applyEquality, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
imageElimination, 
universeEquality, 
dependent_set_memberEquality, 
functionExtensionality, 
addEquality, 
lambdaFormation, 
setEquality, 
productElimination, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[f:\mBbbN{}k  {}\mrightarrow{}  \mBbbZ{}].    (\mSigma{}(f[x]  |  x  <  k)  \msim{}  primrec(k;0;\mlambda{}j,x.  (x  +  f[j])))
Date html generated:
2016_05_14-AM-07_31_20
Last ObjectModification:
2016_01_14-PM-09_56_40
Theory : int_2
Home
Index