Nuprl Lemma : sum-as-primrec

[k:ℕ]. ∀[f:ℕk ⟶ ℤ].  (f[x] x < k) primrec(k;0;λj,x. (x f[j])))


Proof




Definitions occuring in Statement :  sum: Σ(f[x] x < k) primrec: primrec(n;b;c) int_seg: {i..j-} nat: uall: [x:A]. B[x] so_apply: x[s] lambda: λx.A[x] function: x:A ⟶ B[x] add: m natural_number: $n int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a sum: Σ(f[x] x < k) sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T} nat: so_apply: x[s] ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top and: P ∧ Q prop: squash: T int_seg: {i..j-} subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) lelt: i ≤ j < k true: True so_lambda: λ2x.t[x]
Lemmas referenced :  sum_aux-as-primrec lelt_wf int_seg_properties false_wf int_seg_subtype zero-add le_wf int_term_value_subtract_lemma int_formula_prop_eq_lemma itermSubtract_wf intformeq_wf subtract_wf decidable__equal_int true_wf squash_wf primrec_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties nat_wf int_seg_wf int_subtype_base subtype_base_sq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination because_Cache independent_isectElimination hypothesis dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination sqequalAxiom functionEquality natural_numberEquality setElimination rename hypothesisEquality intEquality sqequalRule isect_memberEquality lambdaEquality applyEquality unionElimination dependent_pairFormation int_eqEquality voidElimination voidEquality independent_pairFormation computeAll imageElimination universeEquality dependent_set_memberEquality functionExtensionality addEquality lambdaFormation setEquality productElimination imageMemberEquality baseClosed

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[f:\mBbbN{}k  {}\mrightarrow{}  \mBbbZ{}].    (\mSigma{}(f[x]  |  x  <  k)  \msim{}  primrec(k;0;\mlambda{}j,x.  (x  +  f[j])))



Date html generated: 2016_05_14-AM-07_31_20
Last ObjectModification: 2016_01_14-PM-09_56_40

Theory : int_2


Home Index