Nuprl Lemma : sum-nat

[n:ℕ]. ∀[f:ℕn ⟶ ℕ].  (f[x] x < n) ∈ ℕ)


Proof




Definitions occuring in Statement :  sum: Σ(f[x] x < k) int_seg: {i..j-} nat: uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B uimplies: supposing a all: x:A. B[x] guard: {T} int_seg: {i..j-} ge: i ≥  lelt: i ≤ j < k and: P ∧ Q le: A ≤ B prop: decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top
Lemmas referenced :  int_formula_prop_wf int_formula_prop_not_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformnot_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt le_wf lelt_wf decidable__le nat_properties int_seg_properties non_neg_sum sum_wf nat_wf int_seg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut dependent_set_memberEquality sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry functionEquality lemma_by_obid isectElimination thin natural_numberEquality setElimination rename hypothesisEquality isect_memberEquality because_Cache lambdaEquality applyEquality independent_isectElimination lambdaFormation productElimination dependent_functionElimination independent_pairFormation unionElimination setEquality intEquality dependent_pairFormation int_eqEquality voidElimination voidEquality computeAll

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}].    (\mSigma{}(f[x]  |  x  <  n)  \mmember{}  \mBbbN{})



Date html generated: 2016_05_14-AM-07_31_57
Last ObjectModification: 2016_01_14-PM-09_56_36

Theory : int_2


Home Index