Nuprl Lemma : poly_int_val_cons_cons-sq

n:ℕ. ∀p:polyform(n) List. ∀l:{l:ℤ List| ||l|| n ∈ ℤ. ∀a:ℤ. ∀u:polyform(n).
  ([a l]@[u p] (l@u a^||p||) [a l]@p)


Proof




Definitions occuring in Statement :  poly-int-val: l@p polyform: polyform(n) exp: i^n length: ||as|| cons: [a b] list: List nat: all: x:A. B[x] set: {x:A| B[x]}  multiply: m add: m int: sqequal: t equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a sq_type: SQType(T) implies:  Q guard: {T} subtype_rel: A ⊆B nat: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  subtype_base_sq int_subtype_base poly_int_val_cons_cons polyform_wf istype-int list_wf length_wf_nat set_subtype_base le_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination cumulativity intEquality independent_isectElimination hypothesis dependent_functionElimination hypothesisEquality equalityTransitivity equalitySymmetry independent_functionElimination Error :universeIsType,  Error :setIsType,  Error :equalityIsType4,  applyEquality sqequalRule Error :lambdaEquality_alt,  natural_numberEquality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}p:polyform(n)  List.  \mforall{}l:\{l:\mBbbZ{}  List|  ||l||  =  n\}  .  \mforall{}a:\mBbbZ{}.  \mforall{}u:polyform(n).
    ([a  /  l]@[u  /  p]  \msim{}  (l@u  *  a\^{}||p||)  +  [a  /  l]@p)



Date html generated: 2019_06_20-PM-01_52_06
Last ObjectModification: 2018_10_04-PM-00_19_30

Theory : integer!polynomials


Home Index