Nuprl Lemma : colength_wf
∀[T:Type]. ∀[L:colist(T)].  (colength(L) ∈ partial(ℕ))
Proof
Definitions occuring in Statement : 
colength: colength(L)
, 
colist: colist(T)
, 
partial: partial(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
colength: colength(L)
, 
uimplies: b supposing a
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
colist-fix-ap-partial, 
nat_wf, 
set-value-type, 
le_wf, 
istype-int, 
int-value-type, 
nat-mono, 
b-union_wf, 
unit_wf2, 
istype-universe, 
partial_wf, 
colist_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
independent_isectElimination, 
sqequalRule, 
intEquality, 
Error :lambdaEquality_alt, 
natural_numberEquality, 
hypothesisEquality, 
Error :isect_memberEquality_alt, 
because_Cache, 
Error :universeIsType, 
productEquality, 
Error :functionIsType, 
Error :inhabitedIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L:colist(T)].    (colength(L)  \mmember{}  partial(\mBbbN{}))
Date html generated:
2019_06_20-PM-00_38_13
Last ObjectModification:
2018_10_06-PM-06_09_18
Theory : list_0
Home
Index