Nuprl Lemma : colength_wf

[T:Type]. ∀[L:colist(T)].  (colength(L) ∈ partial(ℕ))


Proof




Definitions occuring in Statement :  colength: colength(L) colist: colist(T) partial: partial(T) nat: uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T colength: colength(L) uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  colist-fix-ap-partial nat_wf set-value-type le_wf istype-int int-value-type nat-mono b-union_wf unit_wf2 istype-universe partial_wf colist_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis independent_isectElimination sqequalRule intEquality Error :lambdaEquality_alt,  natural_numberEquality hypothesisEquality Error :isect_memberEquality_alt,  because_Cache Error :universeIsType,  productEquality Error :functionIsType,  Error :inhabitedIsType,  axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:colist(T)].    (colength(L)  \mmember{}  partial(\mBbbN{}))



Date html generated: 2019_06_20-PM-00_38_13
Last ObjectModification: 2018_10_06-PM-06_09_18

Theory : list_0


Home Index