Nuprl Lemma : cons-has-member
∀[S:Type]. ∀a:S. ∀[b:S List]. ∃x:S. (x ∈ [a / b])
Proof
Definitions occuring in Statement :
l_member: (x ∈ l)
,
cons: [a / b]
,
list: T List
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
member: t ∈ T
,
l_member: (x ∈ l)
,
nat: ℕ
,
le: A ≤ B
,
and: P ∧ Q
,
less_than': less_than'(a;b)
,
false: False
,
not: ¬A
,
implies: P
⇒ Q
,
top: Top
,
select: L[n]
,
cons: [a / b]
,
cand: A c∧ B
,
nat_plus: ℕ+
,
less_than: a < b
,
squash: ↓T
,
true: True
,
guard: {T}
,
uimplies: b supposing a
,
sq_stable: SqStable(P)
,
prop: ℙ
Lemmas referenced :
istype-false,
istype-le,
length_of_cons_lemma,
istype-void,
add_nat_plus,
length_wf_nat,
istype-less_than,
cons_wf,
length_wf,
select_wf,
sq_stable__le,
l_member_wf,
list_wf,
istype-universe
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
Error :isect_memberFormation_alt,
Error :lambdaFormation_alt,
Error :dependent_pairFormation_alt,
hypothesisEquality,
Error :dependent_set_memberEquality_alt,
natural_numberEquality,
sqequalRule,
independent_pairFormation,
hypothesis,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
because_Cache,
dependent_functionElimination,
Error :isect_memberEquality_alt,
voidElimination,
imageMemberEquality,
baseClosed,
Error :inhabitedIsType,
setElimination,
rename,
imageElimination,
productElimination,
Error :equalityIstype,
equalityTransitivity,
equalitySymmetry,
independent_functionElimination,
Error :productIsType,
independent_isectElimination,
Error :universeIsType,
instantiate,
universeEquality
Latex:
\mforall{}[S:Type]. \mforall{}a:S. \mforall{}[b:S List]. \mexists{}x:S. (x \mmember{} [a / b])
Date html generated:
2019_06_20-PM-00_40_38
Last ObjectModification:
2019_03_06-AM-11_06_29
Theory : list_0
Home
Index