Nuprl Lemma : insert-cases2

[T:Type]. ∀eq:EqDecider(T). ∀a:T. ∀L:T List.  (((a ∈ L) ∧ (insert(a;L) L)) ∨ ((¬(a ∈ L)) ∧ (insert(a;L) [a L])))


Proof




Definitions occuring in Statement :  insert: insert(a;L) l_member: (x ∈ l) cons: [a b] list: List deq: EqDecider(T) uall: [x:A]. B[x] all: x:A. B[x] not: ¬A or: P ∨ Q and: P ∧ Q universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] insert: insert(a;L) member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a top: Top or: P ∨ Q and: P ∧ Q cand: c∧ B prop: not: ¬A implies:  Q false: False guard: {T} has-value: (a)↓ bool: 𝔹 unit: Unit it: btrue: tt iff: ⇐⇒ Q rev_implies:  Q ifthenelse: if then else fi  bfalse: ff
Lemmas referenced :  list_wf deq_wf subtype_rel_list top_wf value-type-has-value list-value-type deq-member_wf bool_wf equal-wf-T-base assert_wf l_member_wf not_wf bnot_wf eval_list_sq iff_transitivity iff_weakening_uiff eqtt_to_assert assert-deq-member eqff_to_assert assert_of_bnot equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis universeEquality applyEquality because_Cache independent_isectElimination lambdaEquality isect_memberEquality voidElimination voidEquality sqequalRule equalityTransitivity equalitySymmetry baseClosed inlFormation independent_pairFormation productEquality sqequalIntensionalEquality independent_functionElimination baseApply closedConclusion inrFormation callbyvalueReduce unionElimination equalityElimination dependent_functionElimination productElimination impliesFunctionality

Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T).  \mforall{}a:T.  \mforall{}L:T  List.
        (((a  \mmember{}  L)  \mwedge{}  (insert(a;L)  \msim{}  L))  \mvee{}  ((\mneg{}(a  \mmember{}  L))  \mwedge{}  (insert(a;L)  \msim{}  [a  /  L])))



Date html generated: 2017_04_14-AM-08_53_48
Last ObjectModification: 2017_02_27-PM-03_37_44

Theory : list_0


Home Index