Nuprl Lemma : l_exists_reduce

[T:Type]. ∀L:T List. ∀P:T ⟶ 𝔹.  ((∃x∈L. ↑P[x]) ⇐⇒ ↑reduce(λx,y. (P[x] ∨by);ff;L))


Proof




Definitions occuring in Statement :  l_exists: (∃x∈L. P[x]) reduce: reduce(f;k;as) list: List bor: p ∨bq assert: b bfalse: ff bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] prop: so_apply: x[s] implies:  Q top: Top assert: b ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q guard: {T} lelt: i ≤ j < k int_seg: {i..j-} exists: x:A. B[x] false: False so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] it: nil: [] uimplies: supposing a select: L[n] l_exists: (∃x∈L. P[x]) uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) or: P ∨ Q
Lemmas referenced :  list_induction all_wf bool_wf iff_wf l_exists_wf l_member_wf assert_wf reduce_wf bor_wf bfalse_wf reduce_nil_lemma istype-void reduce_cons_lemma list_wf assert_of_bor assert_witness l_exists_cons cons_wf length_of_nil_lemma stuck-spread base_wf less_than_transitivity1 less_than_irreflexivity exists_wf int_seg_wf false_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule Error :lambdaEquality_alt,  functionEquality cumulativity hypothesis because_Cache Error :universeIsType,  setElimination rename applyEquality functionExtensionality Error :setIsType,  Error :functionIsType,  independent_functionElimination dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination Error :inhabitedIsType,  Error :productIsType,  universeEquality lambdaEquality natural_numberEquality productElimination independent_pairFormation voidEquality isect_memberEquality lambdaFormation independent_isectElimination baseClosed lemma_by_obid unionElimination Error :inlFormation_alt,  Error :inrFormation_alt,  Error :unionIsType,  promote_hyp

Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}P:T  {}\mrightarrow{}  \mBbbB{}.    ((\mexists{}x\mmember{}L.  \muparrow{}P[x])  \mLeftarrow{}{}\mRightarrow{}  \muparrow{}reduce(\mlambda{}x,y.  (P[x]  \mvee{}\msubb{}y);ff;L))



Date html generated: 2019_06_20-PM-00_41_22
Last ObjectModification: 2018_10_02-PM-06_03_53

Theory : list_0


Home Index