Nuprl Lemma : list_eq-sq-list-deq

[eq:Top]. ∀[as,bs:Top List].  (list_eq(eq;as;bs) list-deq(eq) as bs)


Proof




Definitions occuring in Statement :  list_eq: list_eq(eq;as;bs) list-deq: list-deq(eq) list: List uall: [x:A]. B[x] top: Top apply: a sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  guard: {T} uimplies: supposing a prop: subtype_rel: A ⊆B or: P ∨ Q list_eq: list_eq(eq;as;bs) ifthenelse: if then else fi  btrue: tt list-deq: list-deq(eq) list_ind: list_ind nil: [] it: null: null(as) assert: b iff: ⇐⇒ Q and: P ∧ Q true: True rev_implies:  Q sq_type: SQType(T) cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] so_lambda: λ2x.t[x] so_apply: x[s] bfalse: ff squash: T sq_stable: SqStable(P) uiff: uiff(P;Q) le: A ≤ B not: ¬A less_than': less_than'(a;b) decidable: Dec(P) subtract: m less_than: a < b bnot: ¬bb band: p ∧b q so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3]
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf equal-wf-T-base nat_wf colength_wf_list top_wf int_subtype_base list-cases null_nil_lemma btrue_wf subtype_base_sq bool_wf bool_subtype_base iff_imp_equal_bool true_wf assert_wf product_subtype_list spread_cons_lemma equal_wf set_subtype_base le_wf null_cons_lemma bfalse_wf false_wf sq_stable__le le_antisymmetry_iff add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel decidable__le not-le-2 condition-implies-le minus-add minus-one-mul minus-one-mul-top add-commutes subtract_wf not-ge-2 less-iff-le minus-minus add-swap list_wf list_ind_cons_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination sqequalRule lambdaEquality dependent_functionElimination isect_memberEquality sqequalAxiom because_Cache applyEquality unionElimination instantiate cumulativity independent_pairFormation equalityTransitivity equalitySymmetry promote_hyp hypothesis_subsumption productElimination voidEquality baseClosed intEquality applyLambdaEquality imageMemberEquality imageElimination addEquality dependent_set_memberEquality minusEquality

Latex:
\mforall{}[eq:Top].  \mforall{}[as,bs:Top  List].    (list\_eq(eq;as;bs)  \msim{}  list-deq(eq)  as  bs)



Date html generated: 2018_05_21-PM-00_20_28
Last ObjectModification: 2018_05_19-AM-07_00_30

Theory : list_0


Home Index