Nuprl Lemma : pos-length

[A:Type]. ∀[l:A List].  uiff(¬(l [] ∈ (A List));0 < ||l||)


Proof




Definitions occuring in Statement :  length: ||as|| nil: [] list: List less_than: a < b uiff: uiff(P;Q) uall: [x:A]. B[x] not: ¬A natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a all: x:A. B[x] or: P ∨ Q not: ¬A implies:  Q false: False cons: [a b] top: Top guard: {T} nat: le: A ≤ B decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q prop: subtract: m subtype_rel: A ⊆B less_than': less_than'(a;b) true: True less_than: a < b squash: T
Lemmas referenced :  list-cases length_of_nil_lemma nil_wf product_subtype_list length_of_cons_lemma length_wf_nat nat_wf decidable__lt false_wf not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel equal_wf not_wf equal-wf-T-base list_wf cons_neq_nil less_than_wf length_wf member-less_than
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation hypothesis hypothesisEquality extract_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination unionElimination sqequalRule independent_functionElimination cumulativity voidElimination promote_hyp hypothesis_subsumption productElimination isect_memberEquality voidEquality lambdaFormation setElimination rename natural_numberEquality addEquality independent_isectElimination applyEquality lambdaEquality intEquality because_Cache minusEquality equalityTransitivity equalitySymmetry baseClosed imageElimination independent_pairEquality universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[l:A  List].    uiff(\mneg{}(l  =  []);0  <  ||l||)



Date html generated: 2017_04_14-AM-08_54_45
Last ObjectModification: 2017_02_27-PM-03_38_52

Theory : list_0


Home Index