Nuprl Lemma : apply-alist-inl

[A,T:Type].  ∀eq:EqDecider(T). ∀x:T. ∀L:(T × A) List. ∀z:A.  ((apply-alist(eq;L;x) (inl z) ∈ (A?))  (<x, z> ∈ L))


Proof




Definitions occuring in Statement :  apply-alist: apply-alist(eq;L;x) l_member: (x ∈ l) list: List deq: EqDecider(T) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q unit: Unit pair: <a, b> product: x:A × B[x] inl: inl x union: left right universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] and: P ∧ Q iff: ⇐⇒ Q implies:  Q uimplies: supposing a isl: isl(x) sq_type: SQType(T) guard: {T} assert: b ifthenelse: if then else fi  btrue: tt true: True squash: T prop: subtype_rel: A ⊆B outl: outl(x)
Lemmas referenced :  isl-apply-alist btrue_wf bfalse_wf subtype_base_sq bool_wf bool_subtype_base unit_wf2 apply-alist_wf list_wf deq_wf istype-universe l_member_wf squash_wf true_wf outl_wf assert_wf isl_wf subtype_rel_self iff_weakening_equal
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation_alt dependent_functionElimination productElimination independent_isectElimination dependent_set_memberEquality_alt independent_pairFormation equalityTransitivity equalitySymmetry sqequalRule productIsType equalityIstype inhabitedIsType applyLambdaEquality setElimination rename unionElimination instantiate cumulativity independent_functionElimination natural_numberEquality unionIsType universeIsType inlEquality_alt productEquality universeEquality applyEquality lambdaEquality_alt imageElimination independent_pairEquality because_Cache imageMemberEquality baseClosed

Latex:
\mforall{}[A,T:Type].
    \mforall{}eq:EqDecider(T).  \mforall{}x:T.  \mforall{}L:(T  \mtimes{}  A)  List.  \mforall{}z:A.    ((apply-alist(eq;L;x)  =  (inl  z))  {}\mRightarrow{}  (<x,  z>  \mmember{}  L))



Date html generated: 2020_05_19-PM-09_41_51
Last ObjectModification: 2020_01_26-PM-10_42_18

Theory : list_1


Home Index