Nuprl Lemma : isl-apply-alist
∀[A,T:Type].
  ∀eq:EqDecider(T). ∀x:T. ∀L:(T × A) List.
    ((↑isl(apply-alist(eq;L;x)) 
⇐⇒ (x ∈ map(λp.(fst(p));L)))
    ∧ (<x, outl(apply-alist(eq;L;x))> ∈ L) supposing ↑isl(apply-alist(eq;L;x)))
Proof
Definitions occuring in Statement : 
apply-alist: apply-alist(eq;L;x)
, 
l_member: (x ∈ l)
, 
map: map(f;as)
, 
list: T List
, 
deq: EqDecider(T)
, 
outl: outl(x)
, 
assert: ↑b
, 
isl: isl(x)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
pi1: fst(t)
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
lambda: λx.A[x]
, 
pair: <a, b>
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
top: Top
, 
and: P ∧ Q
, 
deq: EqDecider(T)
, 
prop: ℙ
, 
bfalse: ff
, 
isl: isl(x)
, 
outl: outl(x)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
cand: A c∧ B
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
false: False
, 
rev_implies: P 
⇐ Q
, 
not: ¬A
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
exists: ∃x:A. B[x]
, 
l_member: (x ∈ l)
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
nat: ℕ
, 
ge: i ≥ j 
, 
less_than: a < b
, 
squash: ↓T
, 
btrue: tt
, 
true: True
Lemmas referenced : 
apply-alist-cases, 
subtype_rel_list, 
top_wf, 
subtype_rel_product, 
deq_property, 
list_wf, 
deq_wf, 
decidable__assert, 
equal_wf, 
assert_wf, 
all_wf, 
decidable_wf, 
map_wf, 
pi1_wf, 
false_wf, 
l_member_wf, 
decidable_functionality, 
iff_weakening_uiff, 
decidable__l_member, 
member-map, 
int_seg_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
int_seg_wf, 
decidable__equal_int, 
subtract_wf, 
int_seg_subtype, 
decidable__le, 
intformnot_wf, 
itermSubtract_wf, 
intformeq_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
int_formula_prop_eq_lemma, 
le_wf, 
select_wf, 
nat_properties, 
less_than_wf, 
length_wf, 
exists_wf, 
decidable__lt, 
not_wf, 
lelt_wf, 
set_wf, 
primrec-wf2, 
nat_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
decidable__exists_int_seg, 
true_wf, 
squash_wf, 
pair_eta_rw, 
iff_weakening_equal, 
select_member, 
pi2_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaFormation, 
applyEquality, 
because_Cache, 
productEquality, 
cumulativity, 
independent_isectElimination, 
sqequalRule, 
lambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
universeEquality, 
productElimination, 
dependent_functionElimination, 
setElimination, 
rename, 
independent_pairEquality, 
independent_pairFormation, 
independent_functionElimination, 
addLevel, 
allFunctionality, 
unionElimination, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality, 
natural_numberEquality, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
computeAll, 
equalityTransitivity, 
levelHypothesis, 
hypothesis_subsumption, 
dependent_set_memberEquality, 
functionEquality, 
imageElimination, 
addEquality, 
instantiate, 
axiomEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[A,T:Type].
    \mforall{}eq:EqDecider(T).  \mforall{}x:T.  \mforall{}L:(T  \mtimes{}  A)  List.
        ((\muparrow{}isl(apply-alist(eq;L;x))  \mLeftarrow{}{}\mRightarrow{}  (x  \mmember{}  map(\mlambda{}p.(fst(p));L)))
        \mwedge{}  (<x,  outl(apply-alist(eq;L;x))>  \mmember{}  L)  supposing  \muparrow{}isl(apply-alist(eq;L;x)))
Date html generated:
2017_04_14-AM-09_24_08
Last ObjectModification:
2017_02_27-PM-03_59_32
Theory : list_1
Home
Index