Nuprl Lemma : isl-apply-alist

[A,T:Type].
  ∀eq:EqDecider(T). ∀x:T. ∀L:(T × A) List.
    ((↑isl(apply-alist(eq;L;x)) ⇐⇒ (x ∈ map(λp.(fst(p));L)))
    ∧ (<x, outl(apply-alist(eq;L;x))> ∈ L) supposing ↑isl(apply-alist(eq;L;x)))


Proof




Definitions occuring in Statement :  apply-alist: apply-alist(eq;L;x) l_member: (x ∈ l) map: map(f;as) list: List deq: EqDecider(T) outl: outl(x) assert: b isl: isl(x) uimplies: supposing a uall: [x:A]. B[x] pi1: fst(t) all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q lambda: λx.A[x] pair: <a, b> product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] subtype_rel: A ⊆B uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] top: Top and: P ∧ Q deq: EqDecider(T) prop: bfalse: ff isl: isl(x) outl: outl(x) assert: b ifthenelse: if then else fi  cand: c∧ B iff: ⇐⇒ Q implies:  Q false: False rev_implies:  Q not: ¬A decidable: Dec(P) or: P ∨ Q exists: x:A. B[x] l_member: (x ∈ l) guard: {T} int_seg: {i..j-} lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) le: A ≤ B less_than': less_than'(a;b) nat: ge: i ≥  less_than: a < b squash: T btrue: tt true: True
Lemmas referenced :  apply-alist-cases subtype_rel_list top_wf subtype_rel_product deq_property list_wf deq_wf decidable__assert equal_wf assert_wf all_wf decidable_wf map_wf pi1_wf false_wf l_member_wf decidable_functionality iff_weakening_uiff decidable__l_member member-map int_seg_properties satisfiable-full-omega-tt intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf int_seg_wf decidable__equal_int subtract_wf int_seg_subtype decidable__le intformnot_wf itermSubtract_wf intformeq_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_formula_prop_eq_lemma le_wf select_wf nat_properties less_than_wf length_wf exists_wf decidable__lt not_wf lelt_wf set_wf primrec-wf2 nat_wf itermAdd_wf int_term_value_add_lemma decidable__exists_int_seg true_wf squash_wf pair_eta_rw iff_weakening_equal select_member pi2_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation applyEquality because_Cache productEquality cumulativity independent_isectElimination sqequalRule lambdaEquality isect_memberEquality voidElimination voidEquality universeEquality productElimination dependent_functionElimination setElimination rename independent_pairEquality independent_pairFormation independent_functionElimination addLevel allFunctionality unionElimination equalitySymmetry hyp_replacement applyLambdaEquality natural_numberEquality dependent_pairFormation int_eqEquality intEquality computeAll equalityTransitivity levelHypothesis hypothesis_subsumption dependent_set_memberEquality functionEquality imageElimination addEquality instantiate axiomEquality imageMemberEquality baseClosed

Latex:
\mforall{}[A,T:Type].
    \mforall{}eq:EqDecider(T).  \mforall{}x:T.  \mforall{}L:(T  \mtimes{}  A)  List.
        ((\muparrow{}isl(apply-alist(eq;L;x))  \mLeftarrow{}{}\mRightarrow{}  (x  \mmember{}  map(\mlambda{}p.(fst(p));L)))
        \mwedge{}  (<x,  outl(apply-alist(eq;L;x))>  \mmember{}  L)  supposing  \muparrow{}isl(apply-alist(eq;L;x)))



Date html generated: 2017_04_14-AM-09_24_08
Last ObjectModification: 2017_02_27-PM-03_59_32

Theory : list_1


Home Index