Nuprl Lemma : comparison-antisym
∀[T:Type]. ∀cmp:comparison(T). AntiSym(T;x,y.0 ≤ (cmp x y)) supposing ∀x,y:T.  (((cmp x y) = 0 ∈ ℤ) 
⇒ (x = y ∈ T))
Proof
Definitions occuring in Statement : 
comparison: comparison(T)
, 
anti_sym: AntiSym(T;x,y.R[x; y])
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
anti_sym: AntiSym(T;x,y.R[x; y])
, 
implies: P 
⇒ Q
, 
comparison: comparison(T)
, 
and: P ∧ Q
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
le: A ≤ B
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
comparison_wf, 
equal_wf, 
all_wf, 
int_formula_prop_wf, 
int_term_value_minus_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermMinus_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__equal_int, 
iff_weakening_equal, 
true_wf, 
squash_wf, 
le_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
productElimination, 
applyEquality, 
lambdaEquality, 
imageElimination, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
intEquality, 
natural_numberEquality, 
dependent_functionElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
independent_isectElimination, 
independent_functionElimination, 
because_Cache, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
axiomEquality, 
functionEquality
Latex:
\mforall{}[T:Type]
    \mforall{}cmp:comparison(T).  AntiSym(T;x,y.0  \mleq{}  (cmp  x  y))  supposing  \mforall{}x,y:T.    (((cmp  x  y)  =  0)  {}\mRightarrow{}  (x  =  y))
Date html generated:
2016_05_14-PM-02_38_36
Last ObjectModification:
2016_01_15-AM-07_39_23
Theory : list_1
Home
Index