Nuprl Lemma : comparison-equiv
∀[T:Type]. ∀cmp:comparison(T). EquivRel(T;x,y.(cmp x y) = 0 ∈ ℤ)
Proof
Definitions occuring in Statement : 
comparison: comparison(T)
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
and: P ∧ Q
, 
refl: Refl(T;x,y.E[x; y])
, 
comparison: comparison(T)
, 
cand: A c∧ B
, 
sym: Sym(T;x,y.E[x; y])
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
trans: Trans(T;x,y.E[x; y])
, 
guard: {T}
, 
prop: ℙ
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
uiff: uiff(P;Q)
Lemmas referenced : 
istype-int, 
int_subtype_base, 
comparison_wf, 
subtype_base_sq, 
equal_wf, 
decidable__equal_int, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
itermMinus_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_term_value_minus_lemma, 
int_formula_prop_wf, 
minus-is-int-iff, 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
Error :lambdaFormation_alt, 
independent_pairFormation, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
productElimination, 
hypothesis, 
Error :universeIsType, 
hypothesisEquality, 
Error :equalityIsType4, 
extract_by_obid, 
applyEquality, 
because_Cache, 
sqequalRule, 
natural_numberEquality, 
Error :inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
Error :lambdaEquality_alt, 
independent_pairEquality, 
axiomEquality, 
Error :functionIsTypeImplies, 
universeEquality, 
independent_functionElimination, 
hyp_replacement, 
instantiate, 
isectElimination, 
cumulativity, 
intEquality, 
independent_isectElimination, 
unionElimination, 
approximateComputation, 
Error :dependent_pairFormation_alt, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
baseClosed
Latex:
\mforall{}[T:Type].  \mforall{}cmp:comparison(T).  EquivRel(T;x,y.(cmp  x  y)  =  0)
Date html generated:
2019_06_20-PM-01_41_44
Last ObjectModification:
2018_10_04-PM-04_24_27
Theory : list_1
Home
Index