Nuprl Lemma : comparison-equiv

[T:Type]. ∀cmp:comparison(T). EquivRel(T;x,y.(cmp y) 0 ∈ ℤ)


Proof




Definitions occuring in Statement :  comparison: comparison(T) equiv_rel: EquivRel(T;x,y.E[x; y]) uall: [x:A]. B[x] all: x:A. B[x] apply: a natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] equiv_rel: EquivRel(T;x,y.E[x; y]) and: P ∧ Q refl: Refl(T;x,y.E[x; y]) comparison: comparison(T) cand: c∧ B sym: Sym(T;x,y.E[x; y]) implies:  Q subtype_rel: A ⊆B trans: Trans(T;x,y.E[x; y]) guard: {T} prop: uimplies: supposing a sq_type: SQType(T) decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top uiff: uiff(P;Q)
Lemmas referenced :  istype-int int_subtype_base comparison_wf subtype_base_sq equal_wf decidable__equal_int full-omega-unsat intformand_wf intformnot_wf intformeq_wf itermVar_wf itermConstant_wf itermMinus_wf int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_term_value_minus_lemma int_formula_prop_wf minus-is-int-iff false_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut Error :lambdaFormation_alt,  independent_pairFormation sqequalHypSubstitution setElimination thin rename productElimination hypothesis Error :universeIsType,  hypothesisEquality Error :equalityIsType4,  extract_by_obid applyEquality because_Cache sqequalRule natural_numberEquality Error :inhabitedIsType,  equalityTransitivity equalitySymmetry dependent_functionElimination Error :lambdaEquality_alt,  independent_pairEquality axiomEquality Error :functionIsTypeImplies,  universeEquality independent_functionElimination hyp_replacement instantiate isectElimination cumulativity intEquality independent_isectElimination unionElimination approximateComputation Error :dependent_pairFormation_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination pointwiseFunctionality promote_hyp baseApply closedConclusion baseClosed

Latex:
\mforall{}[T:Type].  \mforall{}cmp:comparison(T).  EquivRel(T;x,y.(cmp  x  y)  =  0)



Date html generated: 2019_06_20-PM-01_41_44
Last ObjectModification: 2018_10_04-PM-04_24_27

Theory : list_1


Home Index