Nuprl Lemma : comparison-refl

[T:Type]. ∀cmp:comparison(T). Refl(T;x,y.0 ≤ (cmp y))


Proof




Definitions occuring in Statement :  comparison: comparison(T) refl: Refl(T;x,y.E[x; y]) uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] apply: a natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] refl: Refl(T;x,y.E[x; y]) comparison: comparison(T) sq_stable: SqStable(P) implies:  Q and: P ∧ Q squash: T le: A ≤ B not: ¬A false: False prop: decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top
Lemmas referenced :  int_formula_prop_wf int_term_value_minus_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermMinus_wf intformeq_wf itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le less_than'_wf comparison_wf sq_stable__le
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalHypSubstitution setElimination thin rename lemma_by_obid isectElimination natural_numberEquality applyEquality hypothesisEquality hypothesis independent_functionElimination productElimination sqequalRule imageMemberEquality baseClosed imageElimination dependent_functionElimination lambdaEquality independent_pairEquality voidElimination axiomEquality equalityTransitivity equalitySymmetry because_Cache universeEquality unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidEquality independent_pairFormation computeAll

Latex:
\mforall{}[T:Type].  \mforall{}cmp:comparison(T).  Refl(T;x,y.0  \mleq{}  (cmp  x  y))



Date html generated: 2016_05_14-PM-02_38_46
Last ObjectModification: 2016_01_15-AM-07_39_11

Theory : list_1


Home Index