Nuprl Lemma : continuous-monotone-list

[F:Type ⟶ Type]. ContinuousMonotone(T.F[T] List) supposing ContinuousMonotone(T.F[T])


Proof




Definitions occuring in Statement :  list: List continuous-monotone: ContinuousMonotone(T.F[T]) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a continuous-monotone: ContinuousMonotone(T.F[T]) and: P ∧ Q type-monotone: Monotone(T.F[T]) list: List so_apply: x[s] so_lambda: λ2x.t[x] nat: type-continuous: Continuous(T.F[T]) all: x:A. B[x] implies:  Q prop: subtype_rel: A ⊆B strong-type-continuous: Continuous+(T.F[T]) ext-eq: A ≡ B guard: {T}
Lemmas referenced :  subtype_rel_sets colist_wf has-value_wf-partial nat_wf set-value-type le_wf int-value-type colength_wf subtype_rel_set subtype_rel_colist subtype_rel_wf strong-continuous-list subtype_rel_weakening list_wf continuous-monotone_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lemma_by_obid sqequalHypSubstitution isectElimination thin applyEquality hypothesisEquality hypothesis sqequalRule lambdaEquality independent_isectElimination intEquality natural_numberEquality cumulativity because_Cache productElimination lambdaFormation axiomEquality isect_memberEquality equalityTransitivity equalitySymmetry universeEquality isectEquality independent_pairEquality functionEquality

Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type].  ContinuousMonotone(T.F[T]  List)  supposing  ContinuousMonotone(T.F[T])



Date html generated: 2016_05_14-PM-03_07_23
Last ObjectModification: 2015_12_26-PM-01_51_44

Theory : list_1


Home Index