Nuprl Lemma : firstn_nth_tl

[T:Type]. ∀[L:T List]. ∀[i:ℕ].  (L firstn(i;L) nth_tl(i;L))


Proof




Definitions occuring in Statement :  firstn: firstn(n;as) nth_tl: nth_tl(n;as) append: as bs list: List nat: uall: [x:A]. B[x] universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: decidable: Dec(P) or: P ∨ Q int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B prop: uimplies: supposing a subtype_rel: A ⊆B top: Top ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3]
Lemmas referenced :  list_ind_nil_lemma list_ind_cons_lemma list_wf nat_wf append_back_nil nth_tl_is_nil int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties top_wf subtype_rel_list firstn_all nth_tl_decomp lelt_wf firstn_nth_tl_decomp length_wf decidable__lt
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality isectElimination hypothesis unionElimination dependent_set_memberEquality independent_pairFormation productElimination cumulativity sqequalRule because_Cache independent_isectElimination applyEquality lambdaEquality isect_memberEquality voidElimination voidEquality natural_numberEquality dependent_pairFormation int_eqEquality intEquality computeAll sqequalAxiom universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[i:\mBbbN{}].    (L  \msim{}  firstn(i;L)  @  nth\_tl(i;L))



Date html generated: 2016_05_14-PM-02_08_15
Last ObjectModification: 2016_01_15-AM-08_02_01

Theory : list_1


Home Index