Nuprl Lemma : flip-conjugation1

[n:ℕ]. ∀[k:ℕ1]. ∀[j:ℕk].  ((j, 1) ((k, 1) ((j, k) (k, 1))) ∈ (ℕn ⟶ ℕn))


Proof




Definitions occuring in Statement :  flip: (i, j) compose: g int_seg: {i..j-} nat: uall: [x:A]. B[x] function: x:A ⟶ B[x] subtract: m add: m natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q guard: {T} nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop:
Lemmas referenced :  nat_wf int_seg_wf subtract_wf lelt_wf int_formula_prop_wf int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_properties int_seg_properties flip-conjugation
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality setElimination rename dependent_set_memberEquality because_Cache productElimination independent_pairFormation hypothesis dependent_functionElimination unionElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule computeAll axiomEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[k:\mBbbN{}n  -  1].  \mforall{}[j:\mBbbN{}k].    ((j,  k  +  1)  =  ((k,  k  +  1)  o  ((j,  k)  o  (k,  k  +  1))))



Date html generated: 2016_05_14-PM-02_13_29
Last ObjectModification: 2016_01_15-AM-07_57_05

Theory : list_1


Home Index