Nuprl Lemma : fresh-nat-exists2

L:ℕ List. ∃n:ℕ(n ∈ L))


Proof




Definitions occuring in Statement :  l_member: (x ∈ l) list: List nat: all: x:A. B[x] exists: x:A. B[x] not: ¬A
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T exists: x:A. B[x] not: ¬A implies:  Q l_member: (x ∈ l) cand: c∧ B uall: [x:A]. B[x] prop: false: False int_seg: {i..j-} nat: lelt: i ≤ j < k and: P ∧ Q guard: {T} ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top
Lemmas referenced :  fresh-nat-exists l_member_wf nat_wf istype-void list_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le istype-less_than length_wf intformless_wf intformeq_wf int_formula_prop_less_lemma int_formula_prop_eq_lemma
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination Error :dependent_pairFormation_alt,  Error :universeIsType,  isectElimination sqequalRule Error :functionIsType,  Error :dependent_set_memberEquality_alt,  setElimination rename independent_pairFormation applyLambdaEquality natural_numberEquality unionElimination independent_isectElimination approximateComputation independent_functionElimination Error :lambdaEquality_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination Error :productIsType,  because_Cache equalityTransitivity equalitySymmetry

Latex:
\mforall{}L:\mBbbN{}  List.  \mexists{}n:\mBbbN{}.  (\mneg{}(n  \mmember{}  L))



Date html generated: 2019_06_20-PM-01_19_36
Last ObjectModification: 2019_03_26-PM-00_53_48

Theory : list_1


Home Index