Nuprl Lemma : from-upto-is-singleton

[n,m:ℤ].  [n, m) [n] ∈ (ℤ List) supposing (n 1) ∈ ℤ


Proof




Definitions occuring in Statement :  from-upto: [n, m) cons: [a b] nil: [] list: List uimplies: supposing a uall: [x:A]. B[x] add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T} from-upto: [n, m) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  has-value: (a)↓ decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop: bfalse: ff bnot: ¬bb assert: b subtype_rel: A ⊆B
Lemmas referenced :  subtype_base_sq int_subtype_base lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int value-type-has-value int-value-type from-upto-nil decidable__le satisfiable-full-omega-tt intformnot_wf intformle_wf itermAdd_wf itermVar_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_add_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf cons_wf nil_wf eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot less_than_wf intformless_wf int_formula_prop_less_lemma equal-wf-base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination cumulativity intEquality independent_isectElimination hypothesis dependent_functionElimination hypothesisEquality equalityTransitivity equalitySymmetry independent_functionElimination sqequalRule addEquality natural_numberEquality lambdaFormation unionElimination equalityElimination productElimination callbyvalueReduce because_Cache dependent_pairFormation lambdaEquality int_eqEquality isect_memberEquality voidElimination voidEquality computeAll promote_hyp applyEquality baseApply closedConclusion baseClosed axiomEquality

Latex:
\mforall{}[n,m:\mBbbZ{}].    [n,  m)  =  [n]  supposing  m  =  (n  +  1)



Date html generated: 2017_04_17-AM-07_56_15
Last ObjectModification: 2017_02_27-PM-04_28_03

Theory : list_1


Home Index