Nuprl Lemma : has-value-mklist

[n,f:Base].  n ∈ ℤ supposing (mklist(n;f))↓


Proof




Definitions occuring in Statement :  mklist: mklist(n;f) has-value: (a)↓ uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T int: base: Base
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a mklist: mklist(n;f) top: Top prop: nat: implies:  Q false: False ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] and: P ∧ Q subtype_rel: A ⊆B decidable: Dec(P) or: P ∨ Q nat_plus: + has-value: (a)↓
Lemmas referenced :  primrec-as-fix has-value_wf_base base_wf nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf int_subtype_base fun_exp0_lemma strictness-apply bottom_diverge decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma fun_exp_unroll_1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution sqequalRule extract_by_obid isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry baseApply closedConclusion baseClosed hypothesisEquality because_Cache compactness setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination independent_pairFormation applyEquality unionElimination dependent_set_memberEquality callbyvalueLess productElimination

Latex:
\mforall{}[n,f:Base].    n  \mmember{}  \mBbbZ{}  supposing  (mklist(n;f))\mdownarrow{}



Date html generated: 2018_05_21-PM-00_37_58
Last ObjectModification: 2018_05_19-AM-06_44_17

Theory : list_1


Home Index