Nuprl Lemma : has-value-mklist
∀[n,f:Base].  n ∈ ℤ supposing (mklist(n;f))↓
Proof
Definitions occuring in Statement : 
mklist: mklist(n;f)
, 
has-value: (a)↓
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
, 
base: Base
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
mklist: mklist(n;f)
, 
top: Top
, 
prop: ℙ
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
nat_plus: ℕ+
, 
has-value: (a)↓
Lemmas referenced : 
primrec-as-fix, 
has-value_wf_base, 
base_wf, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
int_subtype_base, 
fun_exp0_lemma, 
strictness-apply, 
bottom_diverge, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
fun_exp_unroll_1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
sqequalRule, 
extract_by_obid, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
because_Cache, 
compactness, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
independent_pairFormation, 
applyEquality, 
unionElimination, 
dependent_set_memberEquality, 
callbyvalueLess, 
productElimination
Latex:
\mforall{}[n,f:Base].    n  \mmember{}  \mBbbZ{}  supposing  (mklist(n;f))\mdownarrow{}
Date html generated:
2018_05_21-PM-00_37_58
Last ObjectModification:
2018_05_19-AM-06_44_17
Theory : list_1
Home
Index