Nuprl Lemma : hd_l_interval

[T:Type]. ∀[l:T List]. ∀[i:ℕ||l||]. ∀[j:ℕi].  (hd(l_interval(l;j;i)) l[j] ∈ T)


Proof




Definitions occuring in Statement :  l_interval: l_interval(l;j;i) select: L[n] hd: hd(l) length: ||as|| list: List int_seg: {i..j-} uall: [x:A]. B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] int_seg: {i..j-} top: Top squash: T prop: lelt: i ≤ j < k and: P ∧ Q guard: {T} all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A le: A ≤ B less_than: a < b less_than': less_than'(a;b) true: True subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q cand: c∧ B
Lemmas referenced :  int_seg_wf length_wf list_wf select0 equal_wf squash_wf true_wf select_l_interval int_seg_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf itermAdd_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_wf lelt_wf false_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma select_wf decidable__le intformle_wf int_formula_prop_le_lemma iff_weakening_equal le_wf less_than_wf add-zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality hypothesis because_Cache cumulativity universeEquality isect_memberFormation sqequalRule isect_memberEquality axiomEquality voidElimination voidEquality applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry dependent_set_memberEquality productElimination independent_pairFormation dependent_functionElimination addEquality unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality computeAll lambdaFormation imageMemberEquality baseClosed independent_functionElimination productEquality

Latex:
\mforall{}[T:Type].  \mforall{}[l:T  List].  \mforall{}[i:\mBbbN{}||l||].  \mforall{}[j:\mBbbN{}i].    (hd(l\_interval(l;j;i))  =  l[j])



Date html generated: 2017_04_17-AM-07_42_48
Last ObjectModification: 2017_02_27-PM-04_15_00

Theory : list_1


Home Index