Nuprl Lemma : imax-list-eq-implies
∀L:ℤ List. ∀a:ℤ.  ((a ∈ L)) supposing ((imax-list(L) = a ∈ ℤ) and 0 < ||L||)
Proof
Definitions occuring in Statement : 
imax-list: imax-list(L)
, 
l_member: (x ∈ l)
, 
length: ||as||
, 
list: T List
, 
less_than: a < b
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
sq_type: SQType(T)
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
prop: ℙ
Lemmas referenced : 
member-less_than, 
length_wf, 
subtype_base_sq, 
int_subtype_base, 
imax-list-member, 
equal_wf, 
imax-list_wf, 
less_than_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
introduction, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
intEquality, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
rename, 
axiomEquality, 
instantiate, 
cumulativity, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination
Latex:
\mforall{}L:\mBbbZ{}  List.  \mforall{}a:\mBbbZ{}.    ((a  \mmember{}  L))  supposing  ((imax-list(L)  =  a)  and  0  <  ||L||)
Date html generated:
2016_05_14-PM-01_42_21
Last ObjectModification:
2015_12_26-PM-05_30_36
Theory : list_1
Home
Index