Nuprl Lemma : imax-list-eq-implies

L:ℤ List. ∀a:ℤ.  ((a ∈ L)) supposing ((imax-list(L) a ∈ ℤand 0 < ||L||)


Proof




Definitions occuring in Statement :  imax-list: imax-list(L) l_member: (x ∈ l) length: ||as|| list: List less_than: a < b uimplies: supposing a all: x:A. B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] sq_type: SQType(T) implies:  Q guard: {T} prop:
Lemmas referenced :  member-less_than length_wf subtype_base_sq int_subtype_base imax-list-member equal_wf imax-list_wf less_than_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction lemma_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality intEquality hypothesisEquality hypothesis independent_isectElimination rename axiomEquality instantiate cumulativity dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination

Latex:
\mforall{}L:\mBbbZ{}  List.  \mforall{}a:\mBbbZ{}.    ((a  \mmember{}  L))  supposing  ((imax-list(L)  =  a)  and  0  <  ||L||)



Date html generated: 2016_05_14-PM-01_42_21
Last ObjectModification: 2015_12_26-PM-05_30_36

Theory : list_1


Home Index