Nuprl Lemma : imax-list-member

L:ℤ List. (imax-list(L) ∈ L) supposing 0 < ||L||


Proof




Definitions occuring in Statement :  imax-list: imax-list(L) l_member: (x ∈ l) length: ||as|| list: List less_than: a < b uimplies: supposing a all: x:A. B[x] natural_number: $n int:
Definitions unfolded in proof :  imax-list: imax-list(L) all: x:A. B[x] uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] implies:  Q prop: true: True bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  guard: {T} or: P ∨ Q decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top subtype_rel: A ⊆B bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b squash: T iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  member-less_than length_wf combine-list-member imax_wf less_than_wf list_wf le_int_wf bool_wf eqtt_to_assert assert_of_le_int decidable__equal_int satisfiable-full-omega-tt intformnot_wf intformeq_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf equal-wf-base int_subtype_base eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot le_wf or_wf squash_wf true_wf imax_unfold iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality intEquality hypothesisEquality hypothesis independent_isectElimination rename dependent_functionElimination lambdaEquality independent_functionElimination because_Cache unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination inrFormation dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality computeAll applyEquality promote_hyp instantiate cumulativity inlFormation imageElimination universeEquality imageMemberEquality baseClosed

Latex:
\mforall{}L:\mBbbZ{}  List.  (imax-list(L)  \mmember{}  L)  supposing  0  <  ||L||



Date html generated: 2017_04_14-AM-09_23_59
Last ObjectModification: 2017_02_27-PM-03_59_02

Theory : list_1


Home Index