Nuprl Lemma : int-minus-comparison-inc_wf
∀[T:Type]. ∀[f:T ⟶ ℤ].  (int-minus-comparison-inc(f) ∈ comparison(T))
Proof
Definitions occuring in Statement : 
int-minus-comparison-inc: int-minus-comparison-inc(f)
, 
comparison: comparison(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int-minus-comparison-inc: int-minus-comparison-inc(f)
, 
comparison: comparison(T)
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
le: A ≤ B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
equal-wf-T-base, 
all_wf, 
le_wf, 
int_formula_prop_le_lemma, 
intformle_wf, 
decidable__le, 
equal_wf, 
false_wf, 
int_term_value_constant_lemma, 
int_formula_prop_and_lemma, 
itermConstant_wf, 
intformand_wf, 
subtract-is-int-iff, 
int_formula_prop_wf, 
int_term_value_minus_lemma, 
int_term_value_var_lemma, 
int_term_value_subtract_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
itermMinus_wf, 
itermVar_wf, 
itermSubtract_wf, 
intformeq_wf, 
intformnot_wf, 
satisfiable-full-omega-tt, 
decidable__equal_int, 
subtract_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
dependent_set_memberEquality, 
lambdaEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaFormation, 
dependent_functionElimination, 
because_Cache, 
unionElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
independent_pairFormation, 
pointwiseFunctionality, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
baseApply, 
closedConclusion, 
baseClosed, 
productElimination, 
productEquality, 
cumulativity, 
minusEquality, 
functionEquality, 
axiomEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  \mBbbZ{}].    (int-minus-comparison-inc(f)  \mmember{}  comparison(T))
Date html generated:
2016_05_14-PM-02_36_34
Last ObjectModification:
2016_01_15-AM-07_43_01
Theory : list_1
Home
Index