Nuprl Lemma : l_before_antisymmetry
∀[T:Type]. ∀[l:T List]. ∀[x,y:T].  (¬y before x ∈ l) supposing (x before y ∈ l and no_repeats(T;l))
Proof
Definitions occuring in Statement : 
l_before: x before y ∈ l
, 
no_repeats: no_repeats(T;l)
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
universe: Type
Definitions unfolded in proof : 
l_before: x before y ∈ l
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
uiff: uiff(P;Q)
Lemmas referenced : 
sublist_wf, 
cons_wf, 
nil_wf, 
no_repeats_wf, 
list_wf, 
sublist_transitivity, 
sublist_nil, 
equal_wf, 
or_wf, 
member_wf, 
cons_sublist_cons, 
append_overlapping_sublists, 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
no_repeats_iff
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation, 
thin, 
because_Cache, 
hypothesis, 
sqequalHypSubstitution, 
independent_functionElimination, 
voidElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
lambdaEquality, 
dependent_functionElimination, 
Error :universeIsType, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :inhabitedIsType, 
universeEquality, 
inlFormation, 
independent_pairFormation, 
inrFormation, 
productElimination, 
productEquality, 
cumulativity, 
unionElimination, 
promote_hyp, 
independent_isectElimination, 
voidEquality
Latex:
\mforall{}[T:Type].  \mforall{}[l:T  List].  \mforall{}[x,y:T].    (\mneg{}y  before  x  \mmember{}  l)  supposing  (x  before  y  \mmember{}  l  and  no\_repeats(T;l))
Date html generated:
2019_06_20-PM-01_24_17
Last ObjectModification:
2018_09_26-PM-05_27_58
Theory : list_1
Home
Index