Nuprl Lemma : no_repeats_iff

[T:Type]. ∀[l:T List].  uiff(no_repeats(T;l);∀[x,y:T].  ¬(x y ∈ T) supposing before y ∈ l)


Proof




Definitions occuring in Statement :  l_before: before y ∈ l no_repeats: no_repeats(T;l) list: List uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] not: ¬A universe: Type equal: t ∈ T
Definitions unfolded in proof :  l_before: before y ∈ l no_repeats: no_repeats(T;l) sublist: L1 ⊆ L2 uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a not: ¬A implies:  Q false: False exists: x:A. B[x] int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B subtype_rel: A ⊆B prop: all: x:A. B[x] less_than: a < b squash: T decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) ge: i ≥  nat: guard: {T} subtract: m cons: [a b] select: L[n] true: True less_than': less_than'(a;b) top: Top rev_implies:  Q iff: ⇐⇒ Q increasing: increasing(f;k) cand: c∧ B so_lambda: λ2x.t[x] so_apply: x[s] length: ||as|| list_ind: list_ind nil: [] it: nequal: a ≠ b ∈  assert: b bnot: ¬bb sq_type: SQType(T) bfalse: ff ifthenelse: if then else fi  btrue: tt unit: Unit bool: 𝔹 eq_int: (i =z j)
Lemmas referenced :  int_seg_wf length_wf cons_wf nil_wf increasing_wf length_wf_nat select_wf length_of_cons_lemma length_of_nil_lemma int_seg_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf itermAdd_wf int_formula_prop_less_lemma int_term_value_add_lemma non_neg_length istype-le istype-less_than nat_properties istype-nat istype-void list_wf istype-universe lelt_wf false_wf iff_weakening_equal equal_wf true_wf squash_wf not_wf satisfiable-full-omega-tt int_seg_subtype_nat nat_wf int_formula_prop_eq_lemma intformeq_wf ifthenelse_wf eq_int_wf subtype_rel_dep_function int_seg_subtype istype-false neg_assert_of_eq_int assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal eqff_to_assert assert_of_eq_int eqtt_to_assert bool_wf decidable__equal_int int_subtype_base int_seg_subtype_special int_seg_cases int_term_value_subtract_lemma itermSubtract_wf subtract_wf select-cons-tl select-cons-hd equal-wf-base le_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt introduction cut independent_pairFormation lambdaFormation_alt thin hypothesis sqequalHypSubstitution independent_functionElimination voidElimination equalityIstype inhabitedIsType hypothesisEquality lambdaEquality_alt dependent_functionElimination because_Cache functionIsTypeImplies productIsType functionIsType universeIsType extract_by_obid isectElimination natural_numberEquality setElimination rename productElimination functionExtensionality applyEquality equalityTransitivity equalitySymmetry independent_isectElimination Error :memTop,  imageElimination unionElimination approximateComputation dependent_pairFormation_alt int_eqEquality addEquality dependent_set_memberEquality_alt applyLambdaEquality isect_memberEquality_alt isectIsTypeImplies isectIsType independent_pairEquality instantiate universeEquality baseClosed imageMemberEquality lambdaFormation dependent_set_memberEquality voidEquality isect_memberEquality computeAll intEquality lambdaEquality dependent_pairFormation cumulativity closedConclusion promote_hyp equalityElimination hypothesis_subsumption

Latex:
\mforall{}[T:Type].  \mforall{}[l:T  List].    uiff(no\_repeats(T;l);\mforall{}[x,y:T].    \mneg{}(x  =  y)  supposing  x  before  y  \mmember{}  l)



Date html generated: 2020_05_19-PM-09_42_24
Last ObjectModification: 2020_01_04-PM-08_14_09

Theory : list_1


Home Index