Nuprl Lemma : l_disjoint_from-upto
∀[L:ℤ List]. ∀n1:ℤ. ∀[n2:ℤ]. uiff(∀x:ℤ. ((x ∈ L) 
⇒ (x < n1 ∨ (x ≥ n2 )));l_disjoint(ℤ;L;[n1, n2)))
Proof
Definitions occuring in Statement : 
from-upto: [n, m)
, 
l_disjoint: l_disjoint(T;l1;l2)
, 
l_member: (x ∈ l)
, 
list: T List
, 
less_than: a < b
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
l_disjoint: l_disjoint(T;l1;l2)
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
or: P ∨ Q
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
decidable: Dec(P)
, 
iff: P 
⇐⇒ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
guard: {T}
, 
sq_stable: SqStable(P)
, 
squash: ↓T
Lemmas referenced : 
sq_stable__le, 
int_formula_prop_not_lemma, 
intformnot_wf, 
decidable__lt, 
decidable__le, 
not_wf, 
not_over_and, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermVar_wf, 
intformless_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
from-upto-member, 
list_wf, 
l_disjoint_wf, 
ge_wf, 
or_wf, 
all_wf, 
less_than_wf, 
le_wf, 
subtype_rel_list, 
from-upto_wf, 
l_member_wf, 
and_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
voidElimination, 
lemma_by_obid, 
isectElimination, 
intEquality, 
hypothesis, 
applyEquality, 
setEquality, 
because_Cache, 
independent_isectElimination, 
setElimination, 
rename, 
functionEquality, 
productElimination, 
independent_functionElimination, 
unionElimination, 
natural_numberEquality, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidEquality, 
computeAll, 
inlFormation, 
inrFormation, 
imageMemberEquality, 
baseClosed, 
imageElimination
Latex:
\mforall{}[L:\mBbbZ{}  List].  \mforall{}n1:\mBbbZ{}.  \mforall{}[n2:\mBbbZ{}].  uiff(\mforall{}x:\mBbbZ{}.  ((x  \mmember{}  L)  {}\mRightarrow{}  (x  <  n1  \mvee{}  (x  \mgeq{}  n2  )));l\_disjoint(\mBbbZ{};L;[n1,  n2)))
Date html generated:
2016_05_14-PM-02_01_50
Last ObjectModification:
2016_01_15-AM-08_08_55
Theory : list_1
Home
Index