Nuprl Lemma : l_disjoint_from-upto

[L:ℤ List]. ∀n1:ℤ. ∀[n2:ℤ]. uiff(∀x:ℤ((x ∈ L)  (x < n1 ∨ (x ≥ n2 )));l_disjoint(ℤ;L;[n1, n2)))


Proof




Definitions occuring in Statement :  from-upto: [n, m) l_disjoint: l_disjoint(T;l1;l2) l_member: (x ∈ l) list: List less_than: a < b uiff: uiff(P;Q) uall: [x:A]. B[x] ge: i ≥  all: x:A. B[x] implies:  Q or: P ∨ Q int:
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T l_disjoint: l_disjoint(T;l1;l2) not: ¬A implies:  Q false: False subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x] so_apply: x[s] or: P ∨ Q ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top decidable: Dec(P) iff: ⇐⇒ Q rev_uimplies: rev_uimplies(P;Q) guard: {T} sq_stable: SqStable(P) squash: T
Lemmas referenced :  sq_stable__le int_formula_prop_not_lemma intformnot_wf decidable__lt decidable__le not_wf not_over_and int_formula_prop_wf int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_and_lemma intformle_wf itermVar_wf intformless_wf intformand_wf satisfiable-full-omega-tt from-upto-member list_wf l_disjoint_wf ge_wf or_wf all_wf less_than_wf le_wf subtype_rel_list from-upto_wf l_member_wf and_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation introduction cut sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality voidElimination lemma_by_obid isectElimination intEquality hypothesis applyEquality setEquality because_Cache independent_isectElimination setElimination rename functionEquality productElimination independent_functionElimination unionElimination natural_numberEquality dependent_pairFormation int_eqEquality isect_memberEquality voidEquality computeAll inlFormation inrFormation imageMemberEquality baseClosed imageElimination

Latex:
\mforall{}[L:\mBbbZ{}  List].  \mforall{}n1:\mBbbZ{}.  \mforall{}[n2:\mBbbZ{}].  uiff(\mforall{}x:\mBbbZ{}.  ((x  \mmember{}  L)  {}\mRightarrow{}  (x  <  n1  \mvee{}  (x  \mgeq{}  n2  )));l\_disjoint(\mBbbZ{};L;[n1,  n2)))



Date html generated: 2016_05_14-PM-02_01_50
Last ObjectModification: 2016_01_15-AM-08_08_55

Theory : list_1


Home Index