Nuprl Lemma : l_member_length

[T:Type]. ∀[L:T List]. ∀[x:T].  0 < ||L|| supposing (x ∈ L)


Proof




Definitions occuring in Statement :  l_member: (x ∈ l) length: ||as|| list: List less_than: a < b uimplies: supposing a uall: [x:A]. B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q implies:  Q false: False cons: [a b] top: Top guard: {T} nat: le: A ≤ B decidable: Dec(P) not: ¬A rev_implies:  Q prop: uiff: uiff(P;Q) subtract: m subtype_rel: A ⊆B less_than': less_than'(a;b) true: True
Lemmas referenced :  non_nil_length list-cases length_of_nil_lemma nil_member product_subtype_list length_of_cons_lemma length_wf_nat nat_wf decidable__lt false_wf not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel equal_wf l_member_wf member-less_than length_wf list_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination unionElimination sqequalRule productElimination independent_functionElimination voidElimination promote_hyp hypothesis_subsumption isect_memberEquality voidEquality lambdaFormation setElimination rename natural_numberEquality addEquality independent_pairFormation independent_isectElimination applyEquality lambdaEquality intEquality because_Cache minusEquality equalityTransitivity equalitySymmetry cumulativity universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[x:T].    0  <  ||L||  supposing  (x  \mmember{}  L)



Date html generated: 2017_04_14-AM-09_27_34
Last ObjectModification: 2017_02_27-PM-04_01_09

Theory : list_1


Home Index