Nuprl Lemma : l_member_length
∀[T:Type]. ∀[L:T List]. ∀[x:T].  0 < ||L|| supposing (x ∈ L)
Proof
Definitions occuring in Statement : 
l_member: (x ∈ l), 
length: ||as||, 
list: T List, 
less_than: a < b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
natural_number: $n, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
false: False, 
cons: [a / b], 
top: Top, 
guard: {T}, 
nat: ℕ, 
le: A ≤ B, 
decidable: Dec(P), 
not: ¬A, 
rev_implies: P ⇐ Q, 
prop: ℙ, 
uiff: uiff(P;Q), 
subtract: n - m, 
subtype_rel: A ⊆r B, 
less_than': less_than'(a;b), 
true: True
Lemmas referenced : 
non_nil_length, 
list-cases, 
length_of_nil_lemma, 
nil_member, 
product_subtype_list, 
length_of_cons_lemma, 
length_wf_nat, 
nat_wf, 
decidable__lt, 
false_wf, 
not-lt-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
equal_wf, 
l_member_wf, 
member-less_than, 
length_wf, 
list_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
unionElimination, 
sqequalRule, 
productElimination, 
independent_functionElimination, 
voidElimination, 
promote_hyp, 
hypothesis_subsumption, 
isect_memberEquality, 
voidEquality, 
lambdaFormation, 
setElimination, 
rename, 
natural_numberEquality, 
addEquality, 
independent_pairFormation, 
independent_isectElimination, 
applyEquality, 
lambdaEquality, 
intEquality, 
because_Cache, 
minusEquality, 
equalityTransitivity, 
equalitySymmetry, 
cumulativity, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[x:T].    0  <  ||L||  supposing  (x  \mmember{}  L)
 Date html generated: 
2017_04_14-AM-09_27_34
 Last ObjectModification: 
2017_02_27-PM-04_01_09
Theory : list_1
Home
Index