Nuprl Lemma : l_sum_permute
∀[L1,L2:ℤ List].  l_sum(L1) = l_sum(L2) ∈ ℤ supposing permutation(ℤ;L1;L2)
Proof
Definitions occuring in Statement : 
l_sum: l_sum(L)
, 
permutation: permutation(T;L1;L2)
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
l_sum: l_sum(L)
, 
assoc: Assoc(T;op)
, 
so_apply: x[s1;s2]
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
comm: Comm(T;op)
Lemmas referenced : 
list_wf, 
permutation_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
itermVar_wf, 
itermAdd_wf, 
intformeq_wf, 
intformnot_wf, 
satisfiable-full-omega-tt, 
decidable__equal_int, 
reduce-permutation
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
lambdaEquality, 
addEquality, 
hypothesisEquality, 
natural_numberEquality, 
independent_isectElimination, 
sqequalRule, 
dependent_functionElimination, 
because_Cache, 
hypothesis, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[L1,L2:\mBbbZ{}  List].    l\_sum(L1)  =  l\_sum(L2)  supposing  permutation(\mBbbZ{};L1;L2)
Date html generated:
2016_05_14-PM-02_52_52
Last ObjectModification:
2016_01_15-AM-07_32_55
Theory : list_1
Home
Index