Nuprl Lemma : reduce-permutation
∀[A:Type]. ∀[f:A ⟶ A ⟶ A]. ∀[e:A].
  (∀[as,bs:A List].  reduce(f;e;as) = reduce(f;e;bs) ∈ A supposing permutation(A;as;bs)) supposing 
     (Comm(A;λx,y. f[x;y]) and 
     Assoc(A;λx,y. f[x;y]))
Proof
Definitions occuring in Statement : 
permutation: permutation(T;L1;L2)
, 
reduce: reduce(f;k;as)
, 
list: T List
, 
comm: Comm(T;op)
, 
assoc: Assoc(T;op)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
true: True
, 
so_lambda: λ2x y.t[x; y]
, 
all: ∀x:A. B[x]
, 
top: Top
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
le: A ≤ B
, 
and: P ∧ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
Lemmas referenced : 
reduce-as-combine-list, 
permutation_wf, 
list_wf, 
comm_wf, 
assoc_wf, 
combine-list-permutation, 
cons_wf, 
length_of_cons_lemma, 
non_neg_length, 
decidable__lt, 
length_wf, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
equal_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
nil_wf, 
permutation_weakening, 
append_functionality_wrt_permutation, 
list_ind_cons_lemma, 
list_ind_nil_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
cumulativity, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
functionEquality, 
natural_numberEquality, 
dependent_functionElimination, 
voidElimination, 
voidEquality, 
addEquality, 
unionElimination, 
productElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
independent_pairFormation, 
computeAll, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
independent_functionElimination
Latex:
\mforall{}[A:Type].  \mforall{}[f:A  {}\mrightarrow{}  A  {}\mrightarrow{}  A].  \mforall{}[e:A].
    (\mforall{}[as,bs:A  List].    reduce(f;e;as)  =  reduce(f;e;bs)  supposing  permutation(A;as;bs))  supposing 
          (Comm(A;\mlambda{}x,y.  f[x;y])  and 
          Assoc(A;\mlambda{}x,y.  f[x;y]))
Date html generated:
2017_04_17-AM-08_23_25
Last ObjectModification:
2017_02_27-PM-04_45_15
Theory : list_1
Home
Index