Nuprl Lemma : combine-list-permutation

[A:Type]. ∀[f:A ⟶ A ⟶ A].
  (∀[as,bs:A List].
     (combine-list(x,y.f[x;y];as) combine-list(x,y.f[x;y];bs) ∈ A) supposing 
        (permutation(A;as;bs) and 
        0 < ||as||)) supposing 
     (Comm(A;λx,y. f[x;y]) and 
     Assoc(A;λx,y. f[x;y]))


Proof




Definitions occuring in Statement :  permutation: permutation(T;L1;L2) combine-list: combine-list(x,y.f[x; y];L) length: ||as|| list: List comm: Comm(T;op) assoc: Assoc(T;op) less_than: a < b uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s1;s2] lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: so_apply: x[s1;s2] so_lambda: λ2x.t[x] implies:  Q so_lambda: λ2y.t[x; y] so_apply: x[s] all: x:A. B[x] top: Top ge: i ≥  decidable: Dec(P) or: P ∨ Q le: A ≤ B and: P ∧ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True guard: {T} uiff: uiff(P;Q) subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  permutation_wf less_than_wf length_wf comm_wf assoc_wf permutation-invariant equal_wf combine-list_wf list_wf append_wf cons_wf nil_wf length_of_cons_lemma non_neg_length decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermAdd_wf itermVar_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf permutation-length intformeq_wf int_formula_prop_eq_lemma permutation_transitivity list_ind_cons_lemma list_ind_nil_lemma permutation-rotate length-append length_of_nil_lemma add_nat_plus length_wf_nat nat_plus_wf nat_plus_properties add-is-int-iff false_wf squash_wf true_wf combine-list-append iff_weakening_equal permutation_weakening append_functionality_wrt_permutation combine-list-flip trivial-equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality sqequalRule isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry natural_numberEquality lambdaEquality applyEquality functionExtensionality functionEquality independent_isectElimination independent_functionElimination lambdaFormation dependent_functionElimination voidElimination voidEquality addEquality unionElimination productElimination dependent_pairFormation int_eqEquality intEquality independent_pairFormation computeAll hyp_replacement applyLambdaEquality dependent_set_memberEquality imageMemberEquality baseClosed setElimination rename pointwiseFunctionality promote_hyp baseApply closedConclusion imageElimination universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[f:A  {}\mrightarrow{}  A  {}\mrightarrow{}  A].
    (\mforall{}[as,bs:A  List].
          (combine-list(x,y.f[x;y];as)  =  combine-list(x,y.f[x;y];bs))  supposing 
                (permutation(A;as;bs)  and 
                0  <  ||as||))  supposing 
          (Comm(A;\mlambda{}x,y.  f[x;y])  and 
          Assoc(A;\mlambda{}x,y.  f[x;y]))



Date html generated: 2017_04_17-AM-08_22_58
Last ObjectModification: 2017_02_27-PM-04_44_41

Theory : list_1


Home Index