Nuprl Lemma : combine-list-permutation
∀[A:Type]. ∀[f:A ⟶ A ⟶ A].
  (∀[as,bs:A List].
     (combine-list(x,y.f[x;y];as) = combine-list(x,y.f[x;y];bs) ∈ A) supposing 
        (permutation(A;as;bs) and 
        0 < ||as||)) supposing 
     (Comm(A;λx,y. f[x;y]) and 
     Assoc(A;λx,y. f[x;y]))
Proof
Definitions occuring in Statement : 
permutation: permutation(T;L1;L2)
, 
combine-list: combine-list(x,y.f[x; y];L)
, 
length: ||as||
, 
list: T List
, 
comm: Comm(T;op)
, 
assoc: Assoc(T;op)
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
top: Top
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
le: A ≤ B
, 
and: P ∧ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
permutation_wf, 
less_than_wf, 
length_wf, 
comm_wf, 
assoc_wf, 
permutation-invariant, 
equal_wf, 
combine-list_wf, 
list_wf, 
append_wf, 
cons_wf, 
nil_wf, 
length_of_cons_lemma, 
non_neg_length, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
permutation-length, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
permutation_transitivity, 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
permutation-rotate, 
length-append, 
length_of_nil_lemma, 
add_nat_plus, 
length_wf_nat, 
nat_plus_wf, 
nat_plus_properties, 
add-is-int-iff, 
false_wf, 
squash_wf, 
true_wf, 
combine-list-append, 
iff_weakening_equal, 
permutation_weakening, 
append_functionality_wrt_permutation, 
combine-list-flip, 
trivial-equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
functionEquality, 
independent_isectElimination, 
independent_functionElimination, 
lambdaFormation, 
dependent_functionElimination, 
voidElimination, 
voidEquality, 
addEquality, 
unionElimination, 
productElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
independent_pairFormation, 
computeAll, 
hyp_replacement, 
applyLambdaEquality, 
dependent_set_memberEquality, 
imageMemberEquality, 
baseClosed, 
setElimination, 
rename, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
imageElimination, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[f:A  {}\mrightarrow{}  A  {}\mrightarrow{}  A].
    (\mforall{}[as,bs:A  List].
          (combine-list(x,y.f[x;y];as)  =  combine-list(x,y.f[x;y];bs))  supposing 
                (permutation(A;as;bs)  and 
                0  <  ||as||))  supposing 
          (Comm(A;\mlambda{}x,y.  f[x;y])  and 
          Assoc(A;\mlambda{}x,y.  f[x;y]))
Date html generated:
2017_04_17-AM-08_22_58
Last ObjectModification:
2017_02_27-PM-04_44_41
Theory : list_1
Home
Index