Nuprl Lemma : last-not-before
∀[T:Type]. ∀L:T List. (∀x:T. (last(L) before x ∈ L 
⇐⇒ False)) supposing (no_repeats(T;L) and (¬↑null(L)))
Proof
Definitions occuring in Statement : 
l_before: x before y ∈ l
, 
last: last(L)
, 
no_repeats: no_repeats(T;l)
, 
null: null(as)
, 
list: T List
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
false: False
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
no_repeats_witness, 
no_repeats_iff, 
last_wf, 
before_last, 
l_before_wf, 
istype-void, 
no_repeats_wf, 
istype-assert, 
null_wf, 
list_wf, 
istype-universe, 
l_before_member, 
l_before_transitivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality_alt, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
voidElimination, 
functionIsTypeImplies, 
inhabitedIsType, 
rename, 
extract_by_obid, 
isectElimination, 
independent_functionElimination, 
hypothesis, 
independent_pairFormation, 
because_Cache, 
productElimination, 
independent_isectElimination, 
equalitySymmetry, 
equalityIstype, 
universeIsType, 
functionIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[T:Type]
    \mforall{}L:T  List.  (\mforall{}x:T.  (last(L)  before  x  \mmember{}  L  \mLeftarrow{}{}\mRightarrow{}  False))  supposing  (no\_repeats(T;L)  and  (\mneg{}\muparrow{}null(L)))
Date html generated:
2019_10_15-AM-10_23_47
Last ObjectModification:
2019_08_05-PM-02_11_52
Theory : list_1
Home
Index