Nuprl Lemma : length_l_interval

[T:Type]. ∀[l:T List]. ∀[i:ℕ||l||]. ∀[j:ℕ1].  (||l_interval(l;j;i)|| (i j) ∈ ℤ)


Proof




Definitions occuring in Statement :  l_interval: l_interval(l;j;i) length: ||as|| list: List int_seg: {i..j-} uall: [x:A]. B[x] subtract: m add: m natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  l_interval: l_interval(l;j;i) uall: [x:A]. B[x] member: t ∈ T top: Top nat: int_seg: {i..j-} guard: {T} lelt: i ≤ j < k and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A prop:
Lemmas referenced :  list_wf int_seg_wf le_wf int_formula_prop_wf int_term_value_add_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermAdd_wf intformless_wf itermVar_wf itermSubtract_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le length_wf int_seg_properties subtract_wf mklist_length
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality dependent_set_memberEquality setElimination rename hypothesisEquality hypothesis natural_numberEquality addEquality productElimination dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality independent_pairFormation computeAll because_Cache axiomEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[l:T  List].  \mforall{}[i:\mBbbN{}||l||].  \mforall{}[j:\mBbbN{}i  +  1].    (||l\_interval(l;j;i)||  =  (i  -  j))



Date html generated: 2016_05_14-PM-01_46_02
Last ObjectModification: 2016_01_15-AM-08_20_35

Theory : list_1


Home Index