Nuprl Lemma : list-at-at
∀ms,ns:colist(ℕ).  ∀[T:Type]. ∀[L:colist(T)].  (L@ns@ms = L@combine-skips(ns;ms;0) ∈ colist(T))
Proof
Definitions occuring in Statement : 
combine-skips: combine-skips(as;bs;n)
, 
list-at: L1@L2
, 
colist: colist(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
squash: ↓T
, 
prop: ℙ
, 
nat: ℕ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
false: False
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
nth_tl: nth_tl(n;as)
, 
le_int: i ≤z j
, 
lt_int: i <z j
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
btrue: tt
Lemmas referenced : 
equal_wf, 
squash_wf, 
true_wf, 
list-at_wf, 
list-at-combine-skips, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-le, 
subtype_rel_self, 
iff_weakening_equal, 
colist_wf, 
istype-universe, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
applyEquality, 
thin, 
Error :lambdaEquality_alt, 
sqequalHypSubstitution, 
imageElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
Error :universeIsType, 
Error :inhabitedIsType, 
because_Cache, 
Error :dependent_set_memberEquality_alt, 
natural_numberEquality, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
instantiate, 
productElimination, 
axiomEquality, 
Error :isectIsTypeImplies, 
universeEquality
Latex:
\mforall{}ms,ns:colist(\mBbbN{}).    \mforall{}[T:Type].  \mforall{}[L:colist(T)].    (L@ns@ms  =  L@combine-skips(ns;ms;0))
Date html generated:
2019_06_20-PM-01_21_50
Last ObjectModification:
2018_12_07-PM-06_29_20
Theory : list_1
Home
Index