Nuprl Lemma : member-exists2
∀[T:Type]. ∀L:T List. (∃x:T. (x ∈ L) 
⇐⇒ 0 < ||L||)
Proof
Definitions occuring in Statement : 
l_member: (x ∈ l)
, 
length: ||as||
, 
list: T List
, 
less_than: a < b
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
ge: i ≥ j 
, 
member: t ∈ T
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
le: A ≤ B
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
, 
squash: ↓T
, 
uiff: uiff(P;Q)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
l_member_wf, 
exists_wf, 
member-exists, 
iff_wf, 
nil_wf, 
list_wf, 
equal_wf, 
not_wf, 
length_of_not_nil, 
less_than_wf, 
less_than'_wf, 
decidable__le, 
ge_wf, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
length_wf, 
decidable__lt
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
independent_pairFormation, 
sqequalHypSubstitution, 
lemma_by_obid, 
dependent_functionElimination, 
thin, 
natural_numberEquality, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
unionElimination, 
productElimination, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
computeAll, 
introduction, 
imageElimination, 
independent_pairEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
addLevel, 
impliesFunctionality, 
independent_functionElimination, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  (\mexists{}x:T.  (x  \mmember{}  L)  \mLeftarrow{}{}\mRightarrow{}  0  <  ||L||)
Date html generated:
2016_05_14-PM-01_30_26
Last ObjectModification:
2016_01_15-AM-08_27_37
Theory : list_1
Home
Index