Nuprl Lemma : member-exists2

[T:Type]. ∀L:T List. (∃x:T. (x ∈ L) ⇐⇒ 0 < ||L||)


Proof




Definitions occuring in Statement :  l_member: (x ∈ l) length: ||as|| list: List less_than: a < b uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q ge: i ≥  member: t ∈ T decidable: Dec(P) or: P ∨ Q le: A ≤ B uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop: rev_implies:  Q less_than: a < b squash: T uiff: uiff(P;Q) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  l_member_wf exists_wf member-exists iff_wf nil_wf list_wf equal_wf not_wf length_of_not_nil less_than_wf less_than'_wf decidable__le ge_wf int_formula_prop_wf int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformle_wf itermVar_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt length_wf decidable__lt
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut independent_pairFormation sqequalHypSubstitution lemma_by_obid dependent_functionElimination thin natural_numberEquality isectElimination hypothesisEquality hypothesis unionElimination productElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule computeAll introduction imageElimination independent_pairEquality axiomEquality equalityTransitivity equalitySymmetry addLevel impliesFunctionality independent_functionElimination universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  (\mexists{}x:T.  (x  \mmember{}  L)  \mLeftarrow{}{}\mRightarrow{}  0  <  ||L||)



Date html generated: 2016_05_14-PM-01_30_26
Last ObjectModification: 2016_01_15-AM-08_27_37

Theory : list_1


Home Index