Nuprl Lemma : member_null

[T:Type]. ∀[L:T List]. ∀[x:T].  ¬↑null(L) supposing (x ∈ L)


Proof




Definitions occuring in Statement :  l_member: (x ∈ l) null: null(as) list: List assert: b uimplies: supposing a uall: [x:A]. B[x] not: ¬A universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a not: ¬A implies:  Q false: False prop:
Lemmas referenced :  assert_elim null_wf member-implies-null-eq-bfalse btrue_neq_bfalse assert_wf l_member_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut lambdaFormation thin hypothesis extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination voidElimination sqequalRule lambdaEquality dependent_functionElimination because_Cache Error :universeIsType,  isect_memberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[x:T].    \mneg{}\muparrow{}null(L)  supposing  (x  \mmember{}  L)



Date html generated: 2019_06_20-PM-01_20_12
Last ObjectModification: 2018_09_26-PM-05_20_48

Theory : list_1


Home Index