Nuprl Lemma : mklist-general_add1

[n:ℕ+]. ∀[f:Top].  (mklist-general(n;f) mklist-general(n 1;f) [f mklist-general(n 1;f)])


Proof




Definitions occuring in Statement :  mklist-general: mklist-general(n;h) append: as bs cons: [a b] nil: [] nat_plus: + uall: [x:A]. B[x] top: Top apply: a subtract: m natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat_plus: + nat: all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top and: P ∧ Q prop:
Lemmas referenced :  nat_plus_wf top_wf le_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermSubtract_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_plus_properties subtract_wf mklist-general-add1 subtract-add-cancel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality natural_numberEquality hypothesis dependent_set_memberEquality dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll sqequalAxiom because_Cache

Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[f:Top].    (mklist-general(n;f)  \msim{}  mklist-general(n  -  1;f)  @  [f  mklist-general(n  -  1;f)])



Date html generated: 2016_05_14-PM-01_44_11
Last ObjectModification: 2016_01_15-AM-08_21_44

Theory : list_1


Home Index