Nuprl Lemma : nil_member!

[T:Type]. ∀x:T. ((x ∈[]) ⇐⇒ False)


Proof




Definitions occuring in Statement :  l_member!: (x ∈l) nil: [] uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q false: False universe: Type
Definitions unfolded in proof :  l_member!: (x ∈l) uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q false: False select: L[n] member: t ∈ T uimplies: supposing a nil: [] it: so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] exists: x:A. B[x] cand: c∧ B nat: ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A prop: so_lambda: λ2x.t[x] decidable: Dec(P) or: P ∨ Q so_apply: x[s] rev_implies:  Q
Lemmas referenced :  length_of_nil_lemma stuck-spread base_wf nat_properties satisfiable-full-omega-tt intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf exists_wf nat_wf less_than_wf length_wf nil_wf equal_wf select_wf decidable__le intformnot_wf int_formula_prop_not_lemma all_wf false_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation independent_pairFormation cut sqequalHypSubstitution introduction extract_by_obid hypothesis isectElimination thin baseClosed independent_isectElimination isect_memberEquality voidElimination voidEquality productElimination hypothesisEquality setElimination rename natural_numberEquality dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination computeAll productEquality because_Cache cumulativity unionElimination functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}x:T.  ((x  \mmember{}!  [])  \mLeftarrow{}{}\mRightarrow{}  False)



Date html generated: 2017_04_17-AM-07_27_35
Last ObjectModification: 2017_02_27-PM-04_05_52

Theory : list_1


Home Index