Nuprl Lemma : no-repeats-pairwise

[T:Type]
  ∀L:T List
    ∀[P:{x:T| (x ∈ L)}  ⟶ {x:T| (x ∈ L)}  ⟶ ℙ']
      (∀x,y:{x:T| (x ∈ L)} .  P[x;y] supposing ¬(x y ∈ T))  (∀x,y∈L.  P[x;y]) supposing no_repeats(T;L)


Proof




Definitions occuring in Statement :  pairwise: (∀x,y∈L.  P[x; y]) no_repeats: no_repeats(T;l) l_member: (x ∈ l) list: List uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] not: ¬A implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] uimplies: supposing a member: t ∈ T implies:  Q pairwise: (∀x,y∈L.  P[x; y]) no_repeats: no_repeats(T;l) prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s1;s2] so_apply: x[s] guard: {T} int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top less_than: a < b squash: T le: A ≤ B less_than': less_than'(a;b) nat: ge: i ≥ 
Lemmas referenced :  int_seg_wf nat_wf int_formula_prop_eq_lemma intformeq_wf le_wf nat_properties length_wf false_wf int_seg_subtype_nat int_formula_prop_less_lemma intformless_wf decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le int_seg_properties list-subtype select_wf list_wf no_repeats_wf equal_wf not_wf isect_wf l_member_wf all_wf no_repeats_witness
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_functionElimination hypothesis rename instantiate setEquality cumulativity applyEquality lambdaEquality universeEquality sqequalRule setElimination because_Cache dependent_set_memberEquality dependent_functionElimination functionEquality equalityTransitivity equalitySymmetry independent_isectElimination productElimination unionElimination natural_numberEquality dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll imageElimination

Latex:
\mforall{}[T:Type]
    \mforall{}L:T  List
        \mforall{}[P:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbP{}']
            (\mforall{}x,y:\{x:T|  (x  \mmember{}  L)\}  .    P[x;y]  supposing  \mneg{}(x  =  y))  {}\mRightarrow{}  (\mforall{}x,y\mmember{}L.    P[x;y]) 
            supposing  no\_repeats(T;L)



Date html generated: 2016_05_14-PM-03_07_47
Last ObjectModification: 2016_01_15-AM-07_18_33

Theory : list_1


Home Index