Nuprl Lemma : no_repeats-length-equal-by-relation

[A,B:Type]. ∀[as:A List]. ∀[bs:B List].
  (||as|| ||bs|| ∈ ℤsupposing 
     ((∃R:A ⟶ B ⟶ ℙ
        ((∀a1,a2:A. ∀b:B.  ((a1 ∈ as)  (a2 ∈ as)  (b ∈ bs)  (R a1 b)  (R a2 b)  (a1 a2 ∈ A)))
        ∧ (∀b1,b2:B. ∀a:A.  ((b1 ∈ bs)  (b2 ∈ bs)  (a ∈ as)  (R b1)  (R b2)  (b1 b2 ∈ B)))
        ∧ (∀a∈as.(∃b∈bs. b))
        ∧ (∀b∈bs.(∃a∈as. b)))) and 
     no_repeats(A;as) and 
     no_repeats(B;bs))


Proof




Definitions occuring in Statement :  l_exists: (∃x∈L. P[x]) l_all: (∀x∈L.P[x]) no_repeats: no_repeats(T;l) l_member: (x ∈ l) length: ||as|| list: List uimplies: supposing a uall: [x:A]. B[x] prop: all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q apply: a function: x:A ⟶ B[x] int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a exists: x:A. B[x] and: P ∧ Q all: x:A. B[x] implies:  Q subtype_rel: A ⊆B decidable: Dec(P) or: P ∨ Q le: A ≤ B not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top prop: so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} cand: c∧ B l_all: (∀x∈L.P[x]) l_exists: (∃x∈L. P[x]) int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b squash: T
Lemmas referenced :  no_repeats-length-le-by-relation decidable__equal_int full-omega-unsat intformand_wf intformnot_wf intformeq_wf itermVar_wf intformle_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf subtype_rel_self l_all_wf l_exists_wf l_member_wf no_repeats_wf list_wf istype-universe select_member select_wf int_seg_properties decidable__le itermConstant_wf int_term_value_constant_lemma decidable__lt length_wf intformless_wf int_formula_prop_less_lemma int_seg_wf
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction sqequalHypSubstitution productElimination thin extract_by_obid isectElimination hypothesisEquality independent_isectElimination hypothesis because_Cache lambdaEquality_alt applyEquality universeIsType lambdaFormation_alt sqequalRule inhabitedIsType dependent_functionElimination unionElimination natural_numberEquality approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation productIsType functionIsType universeEquality instantiate equalityIstype setElimination rename setIsType axiomEquality isectIsTypeImplies productEquality imageElimination

Latex:
\mforall{}[A,B:Type].  \mforall{}[as:A  List].  \mforall{}[bs:B  List].
    (||as||  =  ||bs||)  supposing 
          ((\mexists{}R:A  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbP{}
                ((\mforall{}a1,a2:A.  \mforall{}b:B.
                        ((a1  \mmember{}  as)  {}\mRightarrow{}  (a2  \mmember{}  as)  {}\mRightarrow{}  (b  \mmember{}  bs)  {}\mRightarrow{}  (R  a1  b)  {}\mRightarrow{}  (R  a2  b)  {}\mRightarrow{}  (a1  =  a2)))
                \mwedge{}  (\mforall{}b1,b2:B.  \mforall{}a:A.
                          ((b1  \mmember{}  bs)  {}\mRightarrow{}  (b2  \mmember{}  bs)  {}\mRightarrow{}  (a  \mmember{}  as)  {}\mRightarrow{}  (R  a  b1)  {}\mRightarrow{}  (R  a  b2)  {}\mRightarrow{}  (b1  =  b2)))
                \mwedge{}  (\mforall{}a\mmember{}as.(\mexists{}b\mmember{}bs.  R  a  b))
                \mwedge{}  (\mforall{}b\mmember{}bs.(\mexists{}a\mmember{}as.  R  a  b))))  and 
          no\_repeats(A;as)  and 
          no\_repeats(B;bs))



Date html generated: 2020_05_19-PM-09_42_58
Last ObjectModification: 2019_10_23-PM-04_21_45

Theory : list_1


Home Index